Research Article | | Peer-Reviewed

Determination of the Fatty Acids in the Epiphyllum oxypetalum’s Flower and Phylloclade Followed by the Study of Their Esterification with Citric Acid

Received: 24 November 2023    Accepted: 11 December 2023    Published: 8 January 2024
Views:       Downloads:
Abstract

The fatty acids played important roles in the organism and process. Some saturated fatty acids composed and important for the functioning of many cell membranes. There was also saturated fatty acids which are antioxidant, antidiabetic, anti-carcinogen, anti-tumor and could protect the cardiovascular system by favoring the decrease of cholesterol rate. Some saturated fatty acids were used in process as emollient, flow agent, emulsifier, additives-surfactant, viscosity builder, co-emulsifier and internal/external lubricant in plastics. In addition, unsaturated fatty acids are in general antioxidant and anti-inflammatory. In consequence, the singularity of this manuscript aim is to identify and to quantify the fatty acids not only in the leaves-phylloclade of the Epiphyllum oxypetalum but also in its flower without pistil and etamines and in its pistil and etamines. Soxhlet assembly with hexane as solvent was used to extract the active fatty acids molecules in these different parts of the plant Epiphyllum oxypetalum. Chromatography phase gas analysis results gave the distribution of the fatty acids at their different parts-stems and affirmed the presence of lauric, myristic, palmitic, palmitoleic, stearic, oleic, linoleic and linolenic acids. It was noticed that the arachidic acid was seen only in the flower, stamens and pistils and the gadoleic acid is seen only in the stamens and pistils and allowed to consider their capacities to improve heart health, to reduce inflammation as anti-inflammatory, to improve cognitive function, to be anticarcinogenic and to be used as detergent additive. The exploitation of these chromatography phase gas analysis results permitted to give the weight concentration of the different fatty acids (mg/g) in relation to the grinded sample and in relation to the initial fresh sample for the Epiphyllum oxypetalum’s flower with stamens and pistils and for the Epiphyllum oxypetalum’s phylloclade-leaves. Then, the esterification of the Epiphyllum oxypetalum’s different parts with citric acid were carried out on a reflux assembly and followed with time reaction in order not only to extract their active molecules like flavonoids, terpénoïdes, alkaloids and fatty acids but also to determine each plant part’s kinetics parameters seeing that their quantities were in excess in comparison with the citric acid quantities. The results showed that the initial kinetic constant k for the phylloclade and stamens/pistil respectively equals to 165,000 [L2×mol-2×mn-1] and 173,844 [L2×mol-2×mn-1] were very important than for the flower without stamens and pistil equals to 39,469 [L2×mol-2×mn-1] which were certainly due to their porosities and micro-canals.

Published in American Journal of Applied Chemistry (Volume 12, Issue 1)
DOI 10.11648/j.ajac.20241201.11
Page(s) 1-14
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Epiphyllum oxypetalum, Pistil, Stamen, Phylloclade, Fatty Acids, Esterification, Citric Acid, Kinetics Constants

References
[1] Rabeharitsara Andry Tahina, Raharilaza Paulin Merix, Randriana Richard Nambinina – “Esterification Between Citric Acid and Pumpkin Pips’ Organic Molecules – Esters Hydrolysis and Esters Used as Hydrocarbons Additives” - American Journal of Applied Chemistry in Vol. 6, Issue Number 3, June 2018. doi: 10.11648/j.ajac.20180603.12.
[2] Raharilaza Paulin Merix - "Estérification entre les molécules d’acide citrique et les molécules organiques des graines de courges - hydrolyse et valorisations des esters comme additifs des hydrocarbures" Mémoire de fin d’étude en vue de l’obtention du diplôme de Licence en Génie Chimique. E. S. P. A. Université d’Antananarivo. Promotion 2017.
[3] M. Laffitte, F. Rouquerol La réaction chimique Tome 2. Aspects thermodynamiques (suite) et cinétiques, 1991, Eds. Weighton p. 22.
[4] Silva AM, Kong X, Hider RC - «Determination of the pKa of the hydroxyl group in the alpha-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems» - Pharmaceutical Sciences Research Division, King’s College London, London, UK http://www.ncbi.nlm.nih.gov/pubmed/19288211.
[5] Citric acid/C6H8O7 – PubChem.
[6] Behevitra Rovatahianjanahary - «Synthèse de catalyseurs homogènes BXH+ supportés sur les alcènes des aromatiques et des polynucléaires aromatiques oxygénés composant le bois du pin par traitement à l’acide sulfurique – Application dans la synthèse des polymères noires d’acide citrique» - [Synthesis of homogeneous BXH+ catalysts supported on the alkenes of the aromatics and oxygenated aromatic polynuclei composing pine wood by treatment with sulfuric acid - Application in the synthesis of black polymers of citric acid]. Mémoire de fin d’étude en vue de l’obtention du diplôme de Licence en génie des procédés chimiques et industriels. Ecole Supérieure Polytechnique Antananarivo (E. S. P. A) – Université d’Antananarivo. Promotion 2018 – Soutenue le 26 Juillet 2018.
[7] Rabeharitsara Andry Tahina, Sedraniaina Domohina Marie Espérance, Randriamanantena Ny Idealy Elite, Mampitefa Faneva Raïssa – “Esterification Between Citric Acid and Callistemon citrinus, Rice-Husk, Garcinia dulcis Catalysed by Citric Acid’s-H+- Monomers and Polymers Formation Mechanism” – American Journal of Applied Chemistry - Volume 8, Issue 2, April 2020 Pages: 31-54 - doi: 10.11648/j.ajac.20200802.11
[8] Esterification Between Citric Acid and Callistemon citrinus, Rice-Husk and Garcinia dulcis In Glass-Flask Catalysed By Citric Acid’s Protonic Acid-H+ - Monomers and Polymers Formation Mechanism Andry Tahina Rabeharitsara, Sedraniaina Domoina Marie Espérance, Idealy Elite Randriamanantena, Raïssa Faneva Mampitefa, Nambinina Richard Randriana, Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar, 2020/ American Journal of Applied Chemistry.
[9] Andry Tahina Rabeharitsara, Behevitra Rovatahianjanahary, Nambinina Richard Randriana – «Pine Wood Powder Treatment To BXH+ Homogeneous Catalyst (H+/H2SO4) Supported On Its Aromatics And PNA – Application In Black Citric Acid Polymer Synthesis». American Journal of Polymer Science and Technology. Vol. 4, No. 1, May 2018, pp. 1-27. doi: 10.11648/j.ajpst.20180401.11.
[10] Sammy Eric Andriambola – «Valorisation de l’acide citrique en polymères et en sels de mono- di- et tri-ammonium»-[Valorization of citric acid into polymers and mono-di- and tri-ammonium salts]. Mémoire de fin d’étude en vue de l’obtention du diplôme d’Ingénieur en Génie Chimique. E. S. P. A. Université d’Antananarivo. Promotion 2013.
[11] Matthieu Lacroix “ Les lipides” https://www.cours-medecine.info/medecine/biochimie/lipides.html#les-acides-gras – [Accessed 16 May 2023]
[12] Detry Pauline, Fauconnier, Marie-Laure – “Etude biochimique des fractions lipidiques de graines de la famille des apiacées obtenues par différentes méthodes d'extraction” Faculté de Gembloux Agro-Bio Tech (GxABT) - Master en bioingénieur: chimie et bioindustries, à finalité spécialisée, Année académique: 2016-2017.
[13] A. Mekroud – «les lipides» Cours de biochimie A1 DV - 2019/2020.
[14] «Graisses et acides gras dans la nutrition humaine» Rapport d’une consultation d’experts 10 – 14 novembre 2008.
[15] Benseghier Kaoutar, Mr Khamed Oussama – «Huiles Alimentaire de graines Pinus pinea Extraction et Caractérisation physico-chimique» - Mémoire de Fin d’études En Vue De L’obtention Du Diplôme D’ingénieur d’Etat en Sciences Agronomiques Spécialité: Technologie Alimentaire, Présenté et soutenu publiquement le 17/ 06/2014.
[16] Dr I. Belkacem – «Structure et propriétés des acides gras» – Université de constantine https://univ.ency-education.com/uploads/1/3/1/0/13102001/bioch1an-acides_gras2017belkacem.pdf view 10/06/2023.
[17] Elisabetta Angioni, Giovanni Lercker, Natale G. Frega, Gianfranca Carta, Maria Paola Melis, Elisabetta Murru, Simona Spada, Sebastianno Banni – «UV Spectral properties of lipids as tool for their identification» European Journal of Lipid Science and Technology Volume 104, issue 1.
[18] H. Schulz – «Fatty acid oxydation» - Encyclopedia of Biological chemistry (2nd edition) 2013.
[19] Jacqueline B, Marcus MS, RD, LD, CNS, FADA, in culinary Nutrition 2013 – «Lipids Basics: Fats and oils in foods and health».
[20] Mark Gibson, Pat Newsham - «Lipids, Oils, Fats and Extracts» Food Science and the cullinary arts» – Chapter 16.
[21] J. A. G. Gopalakrishna – «Effect of water activity on auto-oxidation of raw peanut oil» Central Food Technological Research Institute, vol. 6, Inde, 1983.
[22] Ralalasoa Jean Henri Tran Bach – “Raffinage de l’huile d’arachide par utilization du polymère noir d’acide citrique” - Mémoire de fin d’étude en vue de l’obtention du diplôme d’Ingénieur en Génie Chimique. E. S. P. A. Université d’Antananarivo. Promotion 2013.
[23] Laboratoire Shigeta http://www.laboratoire-shigeta.com/index.php/le-role-des-acides-gras-dans-lorganisme/ - [Accessed March 2023]
[24] Source – Les lipides, Anses, 2013 https://www.vidal.fr/sante/nutrition/corps-aliments/lipides-energie/acides-gras-satures-insatures-trans.html. – [Accessed March 2023]
[25] C. Larcher - “Les Acides gras” - Cours biochimie BTS ABM1 2016-2017.
[26] Dieffenbacher A. Beare-Rogers and Halm JV. “Lexication of lipid nutrition”. Technical report. Pure and applied chemistry, 2021. 73 (4) : 685-744. Saturated fatty acids.
[27] David J Anneken and al. “Fatty acids”, in Ullman’s Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. Monounsaturated fatty acids.
[28] Tsuchiya A and al. Stearic acid serves as a potent inhibitor of protein tyrosine phosphatase1B. Cellular Physiology biochem 2013.
[29] Dr Urvi Dalal, Dr. Mrunal Shah Modi – “What is lauric acid and how does it benefit tour skin” BeBeautiful.in December 14, 2020. (http://www.bebeautifullin/all-things-skin/everuday)
[30] News Medical Life sciences – “Arachidic acid” – http://www.news-medical.net/life-sciences/arachidic (30/06/2023).
[31] Nutrissentiel Healthy Inside You – “Les omega-7 ça sert à quoi?” – http://www.nutrissentiel.be/fr/blog/les-omega-7
[32] Guesnet P, Allesandr J, Atorg P, al. Les rôles physiologiques majeurs exercés par les acides gras polyinsaturés (AGPI). 2015; 12: 11. Polyunsaturated fatty acids.
[33] Morelle J. Chimie et Biochimie des lipides. Paris : Imprimerie nouvelle, 1965 ; 483 p. Polyunsaturated fatty acids.
[34] Detry, Fauconnier, Marie - Etude biochimique des fractions lipidiques de graines de la famille des apiacées obtenues par différentes méthodes d'extraction - Gembloux Agro-Bio Tech / Master en bioingénieur: chimie et bioindustries, à finalité spécialisée/ 2016-2017).
[35] Fellah Boutheina, Triki Tebra, Guasmi Ferdaws & Ferchichi Ali « Caractéristiques biochimiques et organoleptiques Dosages des métabolites primaires et analyses sensorielles des infusions de Punica granatum L» - Journal of Oasis Agriculture and Sustainable Development 2022.
[36] Ernestine Ravomialisoa - "Valorisation De Piments (Capscicum frutescens Et Capsicum chinense) En Produit Epice Booster D’energie (Pebe-Speb) Et Elaboration D'un Business Plan – Elaboration De Procedures D'extraction Par Esterification A L'acide Citrique, D'identification Des Molecules Actives Et De Synthese De Gels Et De Cristaux Sels De Calcium Des Esters - Application Au Capscicum chinense». Mémoire de fin d’étude en vue de l’obtention du diplôme d’Ingénieur en Génie Chimique. E. S. P. A. Université d’Antananarivo. Soutenu le 11 Février 2022. Promotion 2020.
[37] Rabeharitsara A., Ravomialisoa E., Nambinina R. - “Synthesis Of Capsicum chinense Citric Acid Esters-Its Methanol Trans-esterification Investigations With hplc Analysis And Its valorization As Gels-Crystals Ca-Salts” - American Journal of Applied Chemistry; Volume 9, issue 6, December 2021, Pages: 221-237. Received: Nov. 28, 2021; Accepted: Dec. 16, 2021; Published: Dec. 31, 2021 - doi: 10.11648/j.ajac.20210906.16
[38] Rabeharitsara Andry Tahina - «Trans-Esterification with Methanol of Capscicum Chinense’s Citric Acid Ester Solution Its Calcium Gel And Crystal Salts Synthesis» - “11th Edition of International Conference on Catalysis, Chemical Engineering and Technology” Online Conference held on May 16-17, 2022 - Magnus Group Conferences and Organizing Committee.
[39] Rabeharitsara Andry Tahina, Rakotonanahary Lovasoa Carolia Sabrinah, Hanitra Marie Ratsimba, Nambinina Richard Randriana, Baholy Robijaona, Rakotomamonjy Pierre – “Determining Of The Constituent Molecules Of The Strychnos spinosa Pips By Extraction With Citric Acid Esterification Procedure” – American Journal of Applied Chemistry – Page 21 – 32 – Feb. 24, 2023 doi: 10.11648/j.ajac.20231101.13.
[40] Rakotonanahary Lovasoa Carolia Sabrinah – “Etude Qualitative Et Quantitativedes Acides Gras, Des Steroides, Des Terpenoides, Des Flavonoides Et Des Alcaloides Dans Les Graines De Mokotro « Strychnos Spinosa » Par La Methode D’esterification Avec L’acide Citrique” - Mémoire de fin d’étude en vue de l’obtention du diplôme de Licence en Génie Chimique. E. S. P. A. Université d’Antananarivo. Promotion 2021.
[41] Augustin-Pyramus de Candolle and Adrian Hardy Haworth – 1829 - https://fr.wikipedia.org/wiki/Epiphyllum_oxypetalum 28/06/2023.
[42] Jyoti Kishen Kumar, Snehalatha Nadigar, Shubha. B, Rahila Banu, Mridula Tripati and R. S. Upendra A Review On The Genus: Epiphyllum Department of Biotechnology, New Horizon College of Engineering, Marathahalli, Bangalore, Karnataka, India Amulya Achar, BE BT, NHCE Alumnus (2010-2014).
[43] P. Prajitha, A. Suresh, V. S. Deepak, Hiba Faslu, A Review On Epiphyllum oxypetalum (Dc) Haw, 1*Department of Pharmacology, Devaki Amma Memorial College of Pharmacy, Malappuram, Kerala, India.
[44] R. Abhishek Biswal, P. Jayashree, Kanna Mirunaalini, Vivek Pazhamalai “Molecular docking studies of bioactive compounds from the leaves of Epiphyllum oxypetalum against Treponema pallidum, Zika virus and liver cirrhosis” - Journal of Applied Pharmaceutical Science Vol. 9 (11), pp 069-077, November, 2019 Vels Institute of Science, Technology and Advanced Studies, Chennai, India. Received on 24 January 2020; received in revised form, 21 March 2020; accepted, 08 June 2021; published 01 August 2021.
[45] Shraddha Anil Naik and N. S. Naikwade, Annasaheb Dange, Ashta, Maharashtra - “Anticancer Activity Of Epiphyllum oxypetalum (Dc.) Leaves Extract By In- Vivo In-Vitro Models”, International Journal of Pharmacy and Pharmaceutical Sciences College of B. Pharmacy, Ashta, Maharashtra, India., Department of Pharmacology, Appasaheb Birnale College of Pharmacy 2, South Shivaji Nagar, Nishant Colony, Sangli - 416416, Maharashtra, India.)
[46] Chandra Adam Lesmana, Ni Putu Ermi Hikmawanti Agustin Yumita, - “Pharmacognosy, Phytochemical, and Pharmacology of Wijaya Kusuma Epiphyllum oxypetalum “(DC.) Haw.) - International Journal of Pharmacy and Pharmaceutical Sciences 2 May 2022, – An Update Review, Chandra Adam Lesmana, Ni Putu Ermi Hikmawanti Agustin Yumita), (International Journal of Pharmacy and Pharmaceutical Sciences) – R. S. Upendra, Pratima Khandelwal “Assessment Of Nutritive Values, Phytochemical Constituents And Biotherapeutic Potentials Of Epiphyllum oxypetalum” - International Journal of Pharmacy and Pharmaceutical Sciences Dept. of Biotechnology, New Horizon College of engineering, Marathahalli, Bangalore, Karnataka, India, 2Prof & Head, Dept. of Biotechnology, New Horizon College of engineering, Marathahalli, Bangalore, Karnataka, India. Email: Rsupendra.nhce@gmail.com; Received: 14 Sep, 2012, Revised and Accepted: 29 Oct, 2012).
[47] Chandra Adam Lesmana, Ni Putu Ermi Hikmawanti, Agustin Yumita Pharmacognosy – “Phytochemical, and Pharmacology of Wijaya Kusuma (Epiphyllum oxypetalum)” (DC.) Haw.) – An Update Review, 2 May 2022.
[48] Nursarah Syamimi Anuar, Syahirah Ain Shafie, Muhammad Aiman Faris Maznan, Noor Syaffinaz Noor Mohamad Zin, Nur Ain Sabrina Azmi, Rohaizad Abdul Raoof, Diyas Myrzakozha, Nurdiana Samsulrizal – “Lauric acid improves hormonal profiles, antioxidant properties, sperm quality and histomorphometric changes in testis and epididymis of streptozotocin-induced diabetic infertility rats” -2023 Jul 1: 470: 116558. doi: 10.1016/j.taap.2023.116558. Epub 2023 May 19.
[49] ACME – HARDESTY – “Myristic acid” available from https://www.acme-hardesty.com/product/myristic-acid-C14/ [Accessed 07/11/2023].
[50] Chunli Liu, Chunlong Yuan, Hosahalli S. Ramaswamy, Yamei Ren, Xiaolin Ren – “Antioxidant capacity and hepatoprotective activity of myristic acid acylated derivative of phloridzin” – HELIYON Volume 5, Issue 5, May 2019, e01761.
[51] PROSPECTOR –“Palmitic acid” available from https://www.ulprospector.com/en/na/PersonalCare/Detail/4237/121147/Palmitic-acid [Accessed 07/11/2023].
[52] Camila Oliveira de Souza, Carina A Valenzuela, Ella J Baker, Elizabeth A Miles, José C Rosa Neto, Philip C Calder – “Palmitoleic Acid has Stronger Anti-Inflammatory Potential in Human Endothelial Cells Compared to Oleic and Palmitic Acids” - PMID: 30102465 DOI: 10.1002/mnfr.201800322.
[53] SANTESCIENCE – “Acide stéarique” available from https://www.santesciences.fr/acide-stearique/ [Accessed 16/05/2023 and 07/11/2023].
[54] Ding El and al. – “Chocolate and prevention of cardiovascular disease: A systematic review” – Nutr. Metab. (Lond), 2006 Jan 3; 3: 2.
[55] Seely BL and al. - “Protein tyrosine phosphatase 1B interacts with the activated insulin receptor”. Diabetes, 45 (10): 1379-85.
[56] Habib NA and al. – “Stearic acid and carcinogenesis” Br. J. Cancer 1987.
[57] Consuelo Santa-María, Soledad López-Enríquez, Sergio Montserrat-de la Paz, Isabel Geniz, María Edith Reyes-Quiroz, Manuela Moreno, Francisca Palomares, Francisco Sobrino, and Gonzalo Alba – “Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid” - Nutrients. 2023 Jan; 15 (1): 224. Published online 2023 Jan 1. doi: 10.3390/nu15010224 PMCID: PMC9824542 PMID: 36615882.
[58] Chia-Cheng Wei, Pei-Ling Yen, Shang-Tzen Chang, Pei-Ling Cheng, Yi-Chen Lo and Vivian Hsiu-Chuan Liao – “Antioxidative activities of both oleic acid and Camellia tenuifolia seed oil are regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans – PloS One 2016; 11 (6): e0157195 (National Library of Medecine – National Center for Biotechnology Information.
[59] Mojgan Morvaridzadeh, M. Dulce Estêvão, Mehrnaz Morvaridi, Andrej Belančić, Shooka Mohammadi, Motahareh Hassani, Javad Heshmati, Somayeh Ziaei – “The effect of Conjugated Linoleic Acid intake on oxidative stress parameters and antioxidant enzymes: A systematic review and meta-analysis of randomized clinical trials” - Prostaglandins & Other Lipid Mediators, Volume 163, December 2022, 106666.
[60] Z. Y. Chen, P. T. Chan, K. Y. Kwan & A. Zhang – “Reassessment of the antioxidant activity of conjugated linoleic acids” – Journal of the American Oil Chemists’ Society 74. 749-753 (1997).
[61] Ram Reifen, Anna Karlinsky, Aliza H Stark, Zipi Berkovich, Abraham Nyska – “α-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease” - J Nutr Biochem. 2015 Dec; 26 (12): 1632-40. doi: 10.1016/j.jnutbio.2015.08.006. Epub 2015 Aug 14.
[62] Sayed-Ibrar Alam, Min-Woo Kim, Fawad Ali Shah, Kamram Saeed, Rahat Ullah, Myeong-Ok Kim – “Alpha-Linolenic Acid Impedes Cadmium-Induced oxidative stress, Neuroinflammation, and Neurodegeneration in mouse brain” – Cells. 2021 Sep. 1; 10 (9): 2274. Doi: 10.3390/cells10092274.
[63] HUMAN METABOLOME DATABASE – “Arachidic acid” available from https://hmdb.ca/metabolites/HMDB0002212 [accessed 07/11/2023].
[64] SGS DIGICOMPLY – “Gadolenic acid” available from https://www.digicomply.com/dietary-supplements-database/gadoleic-acid [accessed 07/11/2023].
[65] Mohamed A. Farag & Mohamed Z. Gad – “Omega-9 fatty acids: potential roles in inflammation and cancer management” – J. Genet. Eng. Biotechnol. 2022 Dec; 20: 48 Published online 2022 Mar. 16. Doi: 10.1186/s43141-022-00329-0.
[66] Michel Guisnet, Sebastien Laforge, Dominique Couton – «Cinétique chimique – Réactions et réacteurs chimiques» Cours et exercices corrigés p. 125 – TECHNOSUP – Les filières technologiques des enseignements supérieurs – Edition Ellipses-2007.
Cite This Article
  • APA Style

    Rabeharitsara, A. T., Randriamanantena, N. I. E., Rahelivololoniain, B. R. A., Pierre, R., Ratsimba, H. M. (2024). Determination of the Fatty Acids in the Epiphyllum oxypetalum’s Flower and Phylloclade Followed by the Study of Their Esterification with Citric Acid. American Journal of Applied Chemistry, 12(1), 1-14. https://doi.org/10.11648/j.ajac.20241201.11

    Copy | Download

    ACS Style

    Rabeharitsara, A. T.; Randriamanantena, N. I. E.; Rahelivololoniain, B. R. A.; Pierre, R.; Ratsimba, H. M. Determination of the Fatty Acids in the Epiphyllum oxypetalum’s Flower and Phylloclade Followed by the Study of Their Esterification with Citric Acid. Am. J. Appl. Chem. 2024, 12(1), 1-14. doi: 10.11648/j.ajac.20241201.11

    Copy | Download

    AMA Style

    Rabeharitsara AT, Randriamanantena NIE, Rahelivololoniain BRA, Pierre R, Ratsimba HM. Determination of the Fatty Acids in the Epiphyllum oxypetalum’s Flower and Phylloclade Followed by the Study of Their Esterification with Citric Acid. Am J Appl Chem. 2024;12(1):1-14. doi: 10.11648/j.ajac.20241201.11

    Copy | Download

  • @article{10.11648/j.ajac.20241201.11,
      author = {Andry Tahina Rabeharitsara and Ny Idealy Elite Randriamanantena and Baholy Robijaona a Rahelivololoniain and Rakotomamonjy Pierre and Hanitriniaina Marie Ratsimba},
      title = {Determination of the Fatty Acids in the Epiphyllum oxypetalum’s Flower and Phylloclade Followed by the Study of Their Esterification with Citric Acid},
      journal = {American Journal of Applied Chemistry},
      volume = {12},
      number = {1},
      pages = {1-14},
      doi = {10.11648/j.ajac.20241201.11},
      url = {https://doi.org/10.11648/j.ajac.20241201.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20241201.11},
      abstract = {The fatty acids played important roles in the organism and process. Some saturated fatty acids composed and important for the functioning of many cell membranes. There was also saturated fatty acids which are antioxidant, antidiabetic, anti-carcinogen, anti-tumor and could protect the cardiovascular system by favoring the decrease of cholesterol rate. Some saturated fatty acids were used in process as emollient, flow agent, emulsifier, additives-surfactant, viscosity builder, co-emulsifier and internal/external lubricant in plastics. In addition, unsaturated fatty acids are in general antioxidant and anti-inflammatory. In consequence, the singularity of this manuscript aim is to identify and to quantify the fatty acids not only in the leaves-phylloclade of the Epiphyllum oxypetalum but also in its flower without pistil and etamines and in its pistil and etamines. Soxhlet assembly with hexane as solvent was used to extract the active fatty acids molecules in these different parts of the plant Epiphyllum oxypetalum. Chromatography phase gas analysis results gave the distribution of the fatty acids at their different parts-stems and affirmed the presence of lauric, myristic, palmitic, palmitoleic, stearic, oleic, linoleic and linolenic acids. It was noticed that the arachidic acid was seen only in the flower, stamens and pistils and the gadoleic acid is seen only in the stamens and pistils and allowed to consider their capacities to improve heart health, to reduce inflammation as anti-inflammatory, to improve cognitive function, to be anticarcinogenic and to be used as detergent additive. The exploitation of these chromatography phase gas analysis results permitted to give the weight concentration of the different fatty acids (mg/g) in relation to the grinded sample and in relation to the initial fresh sample for the Epiphyllum oxypetalum’s flower with stamens and pistils and for the Epiphyllum oxypetalum’s phylloclade-leaves. Then, the esterification of the Epiphyllum oxypetalum’s different parts with citric acid were carried out on a reflux assembly and followed with time reaction in order not only to extract their active molecules like flavonoids, terpénoïdes, alkaloids and fatty acids but also to determine each plant part’s kinetics parameters seeing that their quantities were in excess in comparison with the citric acid quantities. The results showed that the initial kinetic constant k for the phylloclade and stamens/pistil respectively equals to 165,000 [L2×mol-2×mn-1] and 173,844 [L2×mol-2×mn-1] were very important than for the flower without stamens and pistil equals to 39,469 [L2×mol-2×mn-1] which were certainly due to their porosities and micro-canals.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Determination of the Fatty Acids in the Epiphyllum oxypetalum’s Flower and Phylloclade Followed by the Study of Their Esterification with Citric Acid
    AU  - Andry Tahina Rabeharitsara
    AU  - Ny Idealy Elite Randriamanantena
    AU  - Baholy Robijaona a Rahelivololoniain
    AU  - Rakotomamonjy Pierre
    AU  - Hanitriniaina Marie Ratsimba
    Y1  - 2024/01/08
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ajac.20241201.11
    DO  - 10.11648/j.ajac.20241201.11
    T2  - American Journal of Applied Chemistry
    JF  - American Journal of Applied Chemistry
    JO  - American Journal of Applied Chemistry
    SP  - 1
    EP  - 14
    PB  - Science Publishing Group
    SN  - 2330-8745
    UR  - https://doi.org/10.11648/j.ajac.20241201.11
    AB  - The fatty acids played important roles in the organism and process. Some saturated fatty acids composed and important for the functioning of many cell membranes. There was also saturated fatty acids which are antioxidant, antidiabetic, anti-carcinogen, anti-tumor and could protect the cardiovascular system by favoring the decrease of cholesterol rate. Some saturated fatty acids were used in process as emollient, flow agent, emulsifier, additives-surfactant, viscosity builder, co-emulsifier and internal/external lubricant in plastics. In addition, unsaturated fatty acids are in general antioxidant and anti-inflammatory. In consequence, the singularity of this manuscript aim is to identify and to quantify the fatty acids not only in the leaves-phylloclade of the Epiphyllum oxypetalum but also in its flower without pistil and etamines and in its pistil and etamines. Soxhlet assembly with hexane as solvent was used to extract the active fatty acids molecules in these different parts of the plant Epiphyllum oxypetalum. Chromatography phase gas analysis results gave the distribution of the fatty acids at their different parts-stems and affirmed the presence of lauric, myristic, palmitic, palmitoleic, stearic, oleic, linoleic and linolenic acids. It was noticed that the arachidic acid was seen only in the flower, stamens and pistils and the gadoleic acid is seen only in the stamens and pistils and allowed to consider their capacities to improve heart health, to reduce inflammation as anti-inflammatory, to improve cognitive function, to be anticarcinogenic and to be used as detergent additive. The exploitation of these chromatography phase gas analysis results permitted to give the weight concentration of the different fatty acids (mg/g) in relation to the grinded sample and in relation to the initial fresh sample for the Epiphyllum oxypetalum’s flower with stamens and pistils and for the Epiphyllum oxypetalum’s phylloclade-leaves. Then, the esterification of the Epiphyllum oxypetalum’s different parts with citric acid were carried out on a reflux assembly and followed with time reaction in order not only to extract their active molecules like flavonoids, terpénoïdes, alkaloids and fatty acids but also to determine each plant part’s kinetics parameters seeing that their quantities were in excess in comparison with the citric acid quantities. The results showed that the initial kinetic constant k for the phylloclade and stamens/pistil respectively equals to 165,000 [L2×mol-2×mn-1] and 173,844 [L2×mol-2×mn-1] were very important than for the flower without stamens and pistil equals to 39,469 [L2×mol-2×mn-1] which were certainly due to their porosities and micro-canals.
    
    VL  - 12
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar

  • Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar

  • Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar

  • Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar

  • Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar

  • Sections