| Peer-Reviewed

Recent Progress in Biopharmaceutical Drugs Research and Development

Received: 17 November 2016     Accepted: 13 January 2017     Published: 24 January 2017
Views:       Downloads:
Abstract

Advances in human health biology and disease have opened up exciting new possibilities for potential new treatments and cures to meet patient needs. Our understanding of these molecular principles has revealed the existence of many regulatory molecules or proteins with medical significance. These proteins are produced naturally within the body only in minute quantities. Developments in recombinant DNA technology and hybridoma technology facilitate the large-scale production of protein of medical interest and are called biopharmaceuticals. This articles attempts to provide an overview of the recombinant biopharmaceutical products available in the market and their contribution towards improving human health. Latest developments within each sectors of biopharmaceuticals is highlighted to provide a greater focus upon actual commercial products thus far manufactured and approved.

Published in International Journal of Microbiology and Biotechnology (Volume 2, Issue 2)
DOI 10.11648/j.ijmb.20170202.15
Page(s) 75-84
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Biopharmaceuticals, Recombinant Proteins, Monoclonal Antibodies, Growth Factors, Hormones, Blood Factors, Cytokines and Interferons, & Vaccines

References
[1] S. Lesley (2001). High-throughput proteomics: protein expression and purification in the post-genomic world. Protein Expr. Purif. 22(2), 159–164.
[2] M. J. Page, B. Amess, C. Rohlff, C. Stubberfield and R Parekh (1999). Proteomics: a major new technology for the drug discovery process. Drug Discovery Today 4(2), 55–62.
[3] H. McLeod and W. Evans (2001). Pharmacogenomics: unlocking the human genome for better drug therapy. Ann. Rev. Pharmacol. Toxicol. 41, 101–121.
[4] G. Ramsay (1998) DNA chips: state of the art. Nature Biotechnol. 16(1), 40–44.
[5] J. Wamg and R Hewick (1999). Proteomics in drug discovery. Drug Discovery Today 4(3), 129–133.
[6] A. Roses (2000). Pharmacogenetics and the practice of medicine. Nature 405(6788), 857–865.
[7] C. Dykes (1996). Genes, disease and medicine. Br. J. Clin. Pharmacol. 42(6), 683–695.
[8] I. Johnson (1983). Human insulin from recombinant DNA technology. Science 219, 632–637.
[9] M. J. Geisow (1991) Characterizing recombinant proteins. Bio/Technology, 9(10), 921–922.
[10] J. Grindley and J. Ogden (2000). Understanding Biopharmaceuticals. Manufacturing and Regulatory Issues. Interpharm Press, Denver, CO.
[11] A. Lubiniecki (1998). Biopharmaceutical regulation—progress and challenges. Curr. Opin. Biotechnol. 9, 305–306.
[12] J. E. Frampton C. R. Lee and D. Faulds (1994). Filgrastim, a review of its pharmacological properties and therapeutic efficacy in neutropenia. Drugs 48(5), 731–760.
[13] J. E. Frampton, Y. E. Yarker and K. L. Goa (1995). Lenograstim, a review of its pharmacological properties and therapeutic efficacy in neutropenia and related clinical settings. Drugs 49(5), 767–793.
[14] J. Harousseau (1997). The role of colony-stimulating factors in the treatment of acute leukaemia. Biodrugs 7(6), 448–460.
[15] K. Kaushansky and J. Drachman (2002). The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production. Oncogene 21(21), 3359–3367.
[16] A. Bottomley, R. Thomas, K. van steen, H. Flechtner and B. Djulbegovic (2002) Human Recombinant erythropoietin and quality of life: a wonder drug or something to wonder about? Lancet Oncol. 3(3), 145–153.
[17] M. Buemi, C. Aloisi, E. Cavallaro, F. Corica, F. Floccari, G. Grasso and A. Lasco, G. Pettinato, A. Ruello, A. Sturiale andN. Frisina (2002). Recombinant human erythropoietin: more than just the correction of uremic anemia. J. Nephrol. 15(2), 97–103.
[18] K. Kaushansky (1997). Thrombopoietien-understanding and manipulating platelet production. Annu. Rev. Med. 48, 1-11.
[19] J. Boonstra, P. Rijken, B. Humbel, F. Cremers, A. Verkleij and P. van Bergen en Henegouwen P(1995). The epidermal growth factor. Cell Biol. Int. 19(5), 413–430.
[20] W. Meyer-Ingold and W. Eichner (1995). Platelet-derived growth factor. Cell Biol. Int. 19(5), 389–398.
[21] T. Deuel, R. S. Kawahara, T. A. Mustoe and G. F. Pierce(1991). Growth factors and wound healing: platelet-derived growth factor as a model cytokine. Ann. Rev. Med. 42, 567–584.
[22] W. Meyer-Ingold (1993). Wound therapy: growth factors as agents to promote healing. Trends Biotechnol. 11, 387–392.
[23] S. Dennler, M. J. Goumans and P. ten Dijke (2002). Transforming growth factor-β signal transduction. J. Leukocyte Biol. 71(5), 731–740.
[24] S. Souchelnytskyi (2002). Transforming growth factor-β signalling and its role in cancer. Exp. Oncol. 24(1), 3–12.
[25] A. Bristow (1993). Recombinant DNA derived insulin analogues as potentially useful therapeutic agents. Trends Biotechnol. 11, 301–305.
[26] H. Ikegami and T. Ogihara (1996). Genetics of insulin-dependent diabetes mellitus. Endocr. J. 43(6), 605–613.
[27] Y. Cao and L. Lam (2002). Projections for insulin treatment for diabetics. Drugs Today 38(6), 419–427.
[28] D. Drucker, D (2002). Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122(2), 531–544.
[29] E. Neely (1994). Use and abuse of human growth hormone. Ann. Review Med. 45, 407–420.
[30] H. Simpson, R. Savine, P. Sonksen, B. A. Bengtsson, L. Carlsson, J. S. Christiansen D. Clemmons, P. Cohen, R. Hintz, K. Ho, P. Mullis, I. Robinson, C. Strasburger, T. Tanaka, M. Thorner, and G. R. S. Council (2002). Growth hormone replacement therapy for adults: into the new millennium. Growth Hormone IGF Res. 12(1), 1–33.
[31] S. Hillier (1994). Current concepts of the role of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum. Reprod. 9(2), 188–191.
[32] N. Macklon and B. Fauser (2001). Follicle stimulating hormone and advanced follicle development in the human. Arch. Med. Res. 32(6), 595–600.
[33] P. Conn and W. Crowley (1994). Gonadotropin-releasing hormone and its analogues. Ann. Rev. Med. 45, 391–405.
[34] C. Hayden, A. H. Balen and A. J. Rutherford (1999). Recombinant gonadotrophins. Br. J. Obstet. Gynaecol. 106(3), 188–196
[35] C. Yallampalli, M. Chauhan, C. S. Thota, S. Kondapaka and S. J. Wimalwansa. (2002). Calcitonin gene regulated peptide in pregnancy and its emerging receptor heterogeneity. Trends Endocrinol. Metab. 13(6), 263–269.
[36] S. Poole (1995). Cytokine therapeutics. Trends Biotechnol. 13, 81–82.
[37] H. Schooltink and J. Rose, J. (2002). Cytokines as therapeutic drugs. J. Interferon Cytokine Res. 22(5), 505–516.
[38] K. Tracey and A. Cerami (1994). Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Ann. Rev. Med. 45,491–503.
[39] L. Moreland, L. W. Heck Jr. and W. J. Koopman (1997). Biological agents for treating rheumatoid arthritis—concepts and progress. Arthritis Rheumatism 40(3), 397–409.
[40] R. Maini, M. Elliott, M. Brennen, O. Williams and M. Feldmann (1997). TNF blockade in rheumatoid arthritis—implications for therapy and pathogenesis. APMIS 105(4), 257–263.
[41] D. Brassard, M. J. Graceand R. W. Bordens (2002). Interferon-α as an immunotherapeutic protein. J. Leukocyte Biol. 71(4), 565–581.
[42] M. Haria and P. Benfield (1995). Interferon-α2A. Drugs 50(5), 873–896.
[43] E. Jonasch and F. Haluska (2001). Interferon in oncological practice: review of interferon biology, clinical applications and toxicities. Oncologist 6(1), 34–55.
[44] K. Lyseng-Williamson and G. Plosker (2002). Management of relapsing–remitting multiple sclerosis—defining the role of subcutaneous recombinant interferon-β-1a (Rebif). Dis. Managem. Health Outcomes 10(5), 307–325.
[45] P. Todd and K. Goa (1992). Interferon-δ-1b. Drugs 43(1), 111–122.
[46] G. Tossing (2001). New developments in interferon therapy. Eur. J. Med. Res. 6(2), 47–65.
[47] D. Bowen (2002). Haemophilia A and haemophilia B: molecular insights. J. Clin. Pathol. Mol. Pathol. 55(1), 1–18.
[48] J. Klinge, N. M. Ananyeva, C. A. Hauser, C. A. Hauser and E. L. Saenko (2002) Hemophilia A—from basic science to clinical practice. Semin. Thrombosis Hemostasis. 28(3), 309–321.
[49] M. E. Legaz, G. Schmer, R. B. Counts and E. W. Davie (1973). Isolation and characterization of human factor VIII (antihaemophilic factor). J. Biol. Chem. 248, 3946–3955.
[50] H. Kingdon and R. Lundblad (2002). An adventure in biotechnology: the development of haemophilia A therapeutic -from whole blood transfusion to recombinant DNA technology to gene therapy. Biotechnol. Appl. Biochem. 35,141–148.
[51] A. Federici and P. Mannucci (2002). Advances in the genetics and treatment of von Willebrand disease. Curr. Opin. Pediat. 14(1) 23–33.
[52] A. Al-Buhairi and M. Jan (2002). Recombinant tissue plasminogen activator for acute ischemic stroke. Saudi Med. J. 23(1), 13–19.
[53] P. Castillo, C. S. Palmer, M. T. Halpern, E.J. Hatziandreuand B.J. Gersh (1997). Cost-effectiveness of thrombolytic therapy for acute myocardial infarction. Ann. Pharmacother. 31(5), 596–603.
[54] J. C. Gillis, A. J. Wagstaffand K. L. Goa (1995). Alteplase. A reappraisal of its pharmacological properties and therapeutic use in acute myocardial infarction. Drugs 50(1), 102–136.
[55] X. Rabasseda (2001). Tenecteplase (TNK tissue plasminogen activator): a new fibrinolytic for the acute treatment of myocardial infarction. Drugs Today 37(11), 749–760.
[56] M. Verstraete, H. R. Lijnen and D. Collen (1995). Thrombolytic agents in development. Drugs, 50(1), 29–42.
[57] M. Verstraete (2000). Third generation thrombolyic drugs. Am. J. Med. 109(1), 52–58.
[58] F. Blasi (1999). The urokinase receptor. A cell surface, regulated chemokine. APMIS 107(1), 96–101.
[59] A. Bannerjee, Y. Chisti and U. C. Bannerjee (2004) Streptokinase – a clinically useful thrombolytic agent. 22, 287-307.
[60] S. Collen and H. Lijnen (1994). Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood 84(3), 680–686.
[61] D. Collen (1998). Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nature Med. 4(3), 279–284.
[62] G. Wright, A. Carver, D. Cottom, D. Reeves,A. Scott,P. Simons, I. Wilmut, I. Garner and A. Colman (1991) High level expression of active human a-1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9, 830–834.
[63] S. Conway and J. Littlewood (1997). rhDNase in cystic fibrosis. Br. J. Hosp. Med. 57(8), 371–372.
[64] S. Conway and A. Watson (1997). Nebulized bronchodilators, corticosteroids and rhDNase in adult patients with cystic fibrosis. Thorax 52(2), S64–S68.
[65] S. Edgington (1993). Nuclease therapeutics in the clinic. Bio/Technology 11, 580–582.
[66] M. Welsh and A. Smith (1995). Cystic fibrosis. Sci. Am. (December), 36–43.
[67] J. Barranger, T. Ohashi, C. M. Hong, J. M. Tomich, J. F. G. M. Aerts, J. M. Tager, J. A. Nolta, L. S.. Sender, S. Weiler and D. B. Kohn (1995). Molecular biology of glucocerebrosidase and the treatment of Gaucher’s disease. Cytokines Mol. Ther. 1(3), 149–163.
[68] H. Zhaoand G. Grabowski (2002). Gaucher’s disease: perspectives on a prototype lysosomal disease. Cell. Mol. Life Sci. 59(4), 694–707.
[69] R. Schiffmann, J. B. Kopp, H. A. Austin, S. Sabnis, D. F. Moore, T. Weibel, J. E. Balow, Brady and O. Roscoe (2001). "Enzyme replacement therapy in Fabry disease: a randomized controlled trial". JAMA. 285 (21): 2743–2749.
[70] W. R.Wilcox, M. Banikazemi, N. Guffon, S. Waldek, P. Lee, G. E. Linthorst, R. J. Desnick and D. P. Germain (2004). "Long-term safety and efficacy of enzyme replacement therapy for Fabry disease". American Journal of Human Genetics. 75 (1): 65–74.
[71] L. Chapple (1997). Reactive oxygen species and antioxidants in inflammatory diseases. J. Clin. Periodontol. 24(5), 287–296.
[72] E. James (1994). Superoxide dismutase. Parasitol. Today 10(12), 482–484.
[73] J. Sandhu (1994). Engineered human vaccines. Crit. Rev. Biotechnol. 14(1), 1–27.
[74] S. Ohtake and T. Arakawa (2013) Recombinant protein therapeutic vaccines. Protein Peptide Let. 20(12):1324-1344.
[75] M. Berger, V. Shankar and A. Vafai 2002). Therapeutic applications of monoclonal antibodies. Am. J. Med. Sci. 324(1), 14–30.
[76] F. Breedveld (2000). Therapeutic monoclonal antibodies. Lancet 355, 735–740.
[77] A. Funaro, A, L. Horenstein, P. Santoro, C. Cinti, A. Gregorini and F. Malavasi (2000) Monoclonal antibodies and the therapy of human cancers. Biotechnol. Adv. 18(5), 385–401.
[78] F. Huennekens (1994). Tumor targeting: activation of prodrugs by enzyme-monoclonal antibody conjugates. Trends Biotechnol. 12, 234–239.
[79] G. Keating and C. Perry (2002). Infliximab—an updated review of its use in Crohn’s disease and rheumatoid arthritis. Biodrugs 16(2), 111–148.
[80] J. Murray (2000). Monoclonal antibody treatment of solid tumors: a coming of age. Semin. Oncol. 27(6), 64–70.
[81] P. Senter and C. Springer (2001). Selective activation of anticancer prodrugs by monoclonal antibody–enzyme conjugates. Adv. Drug Deliv. Rev. 53(3), 247–264.
[82] P. Trail and A. Bianchi (1999). Monoclonal antibody drug conjugates in the treatment of cancer. Curr. Opin. Immunol. 11(5), 584–588.
[83] S. Umemura, G. Sakamoto, H. Sasano, H. Tsuda, F. Akiyama, M. Kurosumi, Y. Tokuda, T. Watanabe, M. Toi, T. Hasegawa, and R. Y. Osamura (2001) Evaluation of HER2 status: for the treatment of metastatic breast cancers by humanized anti-HER2 Monoclonal antibody (trastuzumab) (Pathological committee for optimal use of trastuzumab). Breast Cancer. 2001; 8(4):316-20.
[84] R. Wang (1999). Human tumor antigens: implications for cancer vaccine development. J. Mol. Med. 77(9), 640–655.
[85] R. Wang and S. Rosenberg (1999) Human tumor antigens for cancer vaccine development. Immunol. Rev. 170, 85–100.
Cite This Article
  • APA Style

    K. T. Karunakaran. (2017). Recent Progress in Biopharmaceutical Drugs Research and Development. International Journal of Microbiology and Biotechnology, 2(2), 75-84. https://doi.org/10.11648/j.ijmb.20170202.15

    Copy | Download

    ACS Style

    K. T. Karunakaran. Recent Progress in Biopharmaceutical Drugs Research and Development. Int. J. Microbiol. Biotechnol. 2017, 2(2), 75-84. doi: 10.11648/j.ijmb.20170202.15

    Copy | Download

    AMA Style

    K. T. Karunakaran. Recent Progress in Biopharmaceutical Drugs Research and Development. Int J Microbiol Biotechnol. 2017;2(2):75-84. doi: 10.11648/j.ijmb.20170202.15

    Copy | Download

  • @article{10.11648/j.ijmb.20170202.15,
      author = {K. T. Karunakaran},
      title = {Recent Progress in Biopharmaceutical Drugs Research and Development},
      journal = {International Journal of Microbiology and Biotechnology},
      volume = {2},
      number = {2},
      pages = {75-84},
      doi = {10.11648/j.ijmb.20170202.15},
      url = {https://doi.org/10.11648/j.ijmb.20170202.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmb.20170202.15},
      abstract = {Advances in human health biology and disease have opened up exciting new possibilities for potential new treatments and cures to meet patient needs. Our understanding of these molecular principles has revealed the existence of many regulatory molecules or proteins with medical significance. These proteins are produced naturally within the body only in minute quantities. Developments in recombinant DNA technology and hybridoma technology facilitate the large-scale production of protein of medical interest and are called biopharmaceuticals. This articles attempts to provide an overview of the recombinant biopharmaceutical products available in the market and their contribution towards improving human health. Latest developments within each sectors of biopharmaceuticals is highlighted to provide a greater focus upon actual commercial products thus far manufactured and approved.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Recent Progress in Biopharmaceutical Drugs Research and Development
    AU  - K. T. Karunakaran
    Y1  - 2017/01/24
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijmb.20170202.15
    DO  - 10.11648/j.ijmb.20170202.15
    T2  - International Journal of Microbiology and Biotechnology
    JF  - International Journal of Microbiology and Biotechnology
    JO  - International Journal of Microbiology and Biotechnology
    SP  - 75
    EP  - 84
    PB  - Science Publishing Group
    SN  - 2578-9686
    UR  - https://doi.org/10.11648/j.ijmb.20170202.15
    AB  - Advances in human health biology and disease have opened up exciting new possibilities for potential new treatments and cures to meet patient needs. Our understanding of these molecular principles has revealed the existence of many regulatory molecules or proteins with medical significance. These proteins are produced naturally within the body only in minute quantities. Developments in recombinant DNA technology and hybridoma technology facilitate the large-scale production of protein of medical interest and are called biopharmaceuticals. This articles attempts to provide an overview of the recombinant biopharmaceutical products available in the market and their contribution towards improving human health. Latest developments within each sectors of biopharmaceuticals is highlighted to provide a greater focus upon actual commercial products thus far manufactured and approved.
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • MM Biolabs Pvt Ltd, Bangalore, India

  • Sections