| Peer-Reviewed

An Overview of Metabolic Syndrome and Cameroonian Natural Agents Use in the Management of Associated Factors

Received: 24 August 2023    Accepted: 14 September 2023    Published: 8 October 2023
Views:       Downloads:
Abstract

Metabolic syndrome (MetS) is a group of metabolic disorders that include central obesity, hyperglycaemia, dyslipidemia, hypertension and having an increasing risk of developing cardiovascular diseases. Cameroon, is encounting a significant increase in the prevalence and associated factors in recent decades. In fact, the existing literature showed the prevalence of MetS in Cameroon from 7.0 to 41.1% according to the area and period of study and to the concerned specific groups. It is the same for the associated factors with a prevalence of 8.0 to 69.1% for obesity and overweight; 3.4 to 75.4% for dyslipidaemia; 4.8 to 20.5% for diabetes; and 4.1 to 46.5% for hypertension. For the management of MetS and associated factors, natural substances are complementary or alternative choices regarding the limited side effects of common chemical therapeutics. Cameroonian biodiversity offers a wide variety of natural substances. The present review briefly overviews the MetS and identifies from literature, natural agents useful in the management of MetS and associated factors in Cameroon. Ethnomedicine and ethnobotany studies revealed plant resources of which 18 species are used for at least three associated factors, 195 for one or two factors. Studies done on biological properties revealed five resources, plants being the most represented of which 63 active on at least three factors and 66 on one or two factors. The other resources represented by mushrooms (11 species), marine products (08 species of fishes and 01 species of algae), insects (02 species) and probiotics (02 species) were active on at least two factors. A total of 312 species of which 288 plants are identified useful for management of MetS and associated factors in Cameroon.

Published in Journal of Diseases and Medicinal Plants (Volume 9, Issue 4)
DOI 10.11648/j.jdmp.20230904.11
Page(s) 100-128
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Metabolic Syndrome, Overview, Management, Natural Substances, Cameroon

References
[1] Fahed, G., Aoun, L., Bou Z. M., Allam, S., Bou Z. M., Bouferraa, Y. and Assi, H. I. (2022). Metabolic syndrome: Updates on pathophysiology and management in (2021). International Journal of Molecular Sciences 23 (2): 786. doi: 10.3390/ijms23020786.
[2] Starzak, M.; Stanek, A.; Jakubiak, G. K.; Cholewka, A.; Cieślar, G. (2022). Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice? International Journal of Environmental Research and Public Health 19: 10368. doi: 10.3390/ijerph191610368.
[3] Shiomi N. (2022). Introductory Chapter: An Overview of metabolic syndrome and its prevention. In (Ed.). In lifestyle-related diseases and metabolic syndrome. IntechOpen. doi: 10.5772/intechopen.108025.
[4] Rochlani Y., Pothineni N. V., Kovelamudi S. and Mehta, J. L. (2017). Metabolic syndrome: pathophysiology, management and modulation by natural compounds. Therapeutic advances in cardiovascular disease 11 (8): 215-225. doi: 10.1177/175394471771137.
[5] Jaspinder K. (2014). A comprehensive review on metabolic syndrome. Cardiology research and practice 2014: 943162. doi: 10.1155/2014/943162.
[6] Belete, R., Ataro, Z., Abdu, A. and Sheleme, M. (2021). Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: a systematic review and meta-analysis. Diabetology and Metabolic Syndryndrome 13 (1): 25. doi: 10.1186/s13098-021-00641-8.
[7] Faijer-Westerink, H. J., Kengne, A. P., Meeks, K. A. and Agyemang, C. (2020). Prevalence of metabolic syndrome in sub-Saharan Africa: A systematic review and meta-analysis. Nutrition, Metabolism and Cardiovascular Diseases 30 (4): 547-565. doi: 10.1016/j.numecd.2019.12.012.
[8] Swarup S., Goyal A., Grigorova Y. and Zeltser R. (2022). Metabolic syndrome. [Updated 2022 Oct 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. Available from: https: //www.ncbi.nlm.nih.gov/books/NBK459248/
[9] Klaschka, U. (2015). Naturally toxic: natural substances used in personal care products. Environmental Sciences Europe 27 (1). doi: 10.1186/s12302-014-0033-2.
[10] Noce A., Di Lauro M., Di Daniele F., Pietroboni Z. A., Marrone G., Borboni P., Di Daniele N. (2021). Natural bioactive compounds useful in clinical management of metabolic syndrome. Nutrients 13 (2). doi: 10.3390/nu13020630.
[11] Panahi Y., Hosseini M. S., Khalili N., Naimi E., Simental-Mendía L. E., Majeed M. and Sahebkar A. (2016). Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomedicine and pharmacotherapy, 82: 578-582. doi: 10.1016/j.biopha.2016.05.037.
[12] Panahi Y., Khalili N., Hosseini M. S., Abbasinazari M. and Sahebkar A. (2014). Lipid-modifying effects of adjunctive therapy with curcuminoids–piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complementary therapies in medicine 22 (5): 851-857. doi: 10.1016/j.ctim.2014.07.006.
[13] Yusni, Y. and Meutia, F. (2020). Action mechanism of Rosella (Hibiscus sabdariffa L.) used to treat metabolic syndrome in elderly women. Evidence-Based Complementary and Alternative Medicine 2020: 5351318. doi: 10.1155/2020/5351318.
[14] Gumbarewicz E., Jarząb A., Stepulak A., Kukula-Koch, W. (2022). Zingiber officinale Rosc. in the treatment of metabolic syndrome disorders—A Review of In Vivo Studies. International Journal of Molecular Sciences, 23: 15545. doi: 10.3390/ijms232415545.
[15] Francini-Pesenti F., Spinella P. and Calò L. A. (2019). Potential role of phytochemicals in metabolic syndrome prevention and therapy. Diabetes, Metabolic Syndrome and Obesity, 1 (12): 1987-2002. doi: 10.2147/DMSO.S214550.
[16] Lottenberg A. M., da Silva A. M., Lavrador M. S. F., Machado R. M. and Nakandakare E. R. (2012). The role of dietary fatty acids in the pathology of metabolic syndrome. The Journal of nutritional biochemistry, 23 (9): 1027-1040. doi: 10.1016/j.jnutbio.2012.03.004.
[17] Njinkoue J. M., Koule J. M., Tchoumbougnang F., Milong M. C., Tchintchui N. C., Fowe C. R., Schweigert F. J. and Gouado, I. (2017). Evaluation of hypolipidemic effects of oil extracted of fish Pseudotolithus senegalensis on dyslipidemic female rats. International Journal of Biological and Chemical Sciences, 11 (6): 2952-2961. https: //dx.doi.org/10.4314/ijbcs.v11i6.31
[18] Lemogoum D., Bayauli P., Toto M. J., van de Borne P., M'Buyamba-Kayamba J. R., Leeman M., Degaute J. P. and M'Buyamba-Kabangu J. R. (2010). Gender difference in the burden of cardiovascular risk factors among rural and urban adult Cameroonian populations. Results from the vitaraa study: PP.7.284. Journal of Hypertension 28: 134-135. doi: 10.1097/01.hjh.0000378608.81579.a7.
[19] Mfeukeu-Kuaté L., Jingi A., Boombhi J., Yonta E., Noubiap J., Hamadou B., Nganou-Gnindjio C., Nkoke C., Amougou S. N., Tankeu A., Ménanga A., Sobngwi E., Kingue S. (2018). Prevalence of metabolic syndrome and cardiovascular risk profile in Cameroon: A crosssectional study in a sub-saharan African (SSA) Setting. EC Cardiology 5.8: 596-605.
[20] Marbou WJT, Kuete V. (2019). Prevalence of metabolic syndrome and its components in Bamboutos Division's adults, West Region of Cameroon. BioMed Research International, 9. doi: 10.1155/2019/9676984.
[21] Djeufouata J. D., Ojong E. W., Njamen N. T., Assob J. C. and Telefo P. B. (2020). Prevalence and risk factors of metabolic syndrome in pregnant women in the centre and littoral regions of Cameroon. European Journal of Clinical and Biomedical Sciences 6 (5): 104-115. doi: 10.11648/j.ejcbs.20200605.16.
[22] Dabou S., Ongbayokolak N. S., Fonkeng S. L., Matene F. E., Kamdom N. M., Telefo P. B. (2022). Metabolic syndrome during pregnancy: prevalence and determinants among pregnant women followed-up at the Dschang District Hospital, West Region of Cameroon. Diabetes, Metabolic Syndrome and Obesity, 5 (15): 743-753. doi: 10.2147/DMSO.S348040.
[23] FAO, IFAD, UNICEF, WFP and WHO (2020). The state of food security and nutrition in the world 2020: transforming food systems affordable healthy diets. Rome, FAO, 2020, 240 pages. http: //www.fao.org/3/ca9692en/CA9692EN.pdf
[24] Fouedjeu W. P. C. Oben J. E. and Cianflone K. (2013). Prevalence of overweight, obesity and thinness in Cameroon urban children and adolescents. Journal of Obesity, 2013: 737592. doi: 10.1155/2013/737592.
[25] Tchoubi S., Sobngwi-Tambekou J., Noubiap J. 0. J. N, Asangbeh S. L., Nkoum B. A., Sobngwi E. (2015). Prevalence and risk factors of overweight and obesity among children aged 6–59 months in Cameroon: A multistage, stratified cluster sampling nationwide survey. PLoS ONE 10 (12): e0143215 doi: 10.1371/journal.pone.0143215.
[26] Engle-Stone, R., Nankap, M., Ndjebayi, A. O., Friedman, A., Tarini, A., Brown, K. H. and Kaiser, L. (2018). Prevalence and predictors of overweight and obesity among Cameroonian women in a national survey and relationships with waist circumference and inflammation in Yaoundé and Douala. Maternal and child nutrition 14 (4): e12648. doi: 10.1111/mcn.12648.
[27] Nyangono C. F. N., Dakam W., Ntentie F. R., Missia N., Nika J., Mbemene M. N., Ngondi L. J. and Oben J. E. (2020). Profile of Obesity and Factors Associated Among Adults Cameroonian Living in Urban Area: A Cross Sectional Study. African Journal of Public Health 6 (5): 256-267. doi: 10.11648/j.cajph.20200605.14.
[28] Simo L. P., Agbor V. N., Temgoua F. Z., Fozeu L. C. F., Bonghaseh D. T., Mbonda A. G. N., Yurika R., Dotse-Gborgbortsi W. and Mbanya D. (2021). Prevalence and factors associated with overweight and obesity in selected health areas in a rural health district in Cameroon: a cross-sectional analysis. BMC public health, 21 (1): 1-12. doi: 10.1186/s12889-021-10403-w.
[29] Nkougni J. T., Ntentie F. R., Fonkoua M., Azantsa B. G. K., Nguemto G. R. T., Lumngwena E. N., Ngondi J. L. and Oben J. E. (2022). Relationship between Adiposity, Low-Density Lipoprotein Particles Size and Cardiovascular Risk among Adult Obese Cameroonians. Open Journal of Epidemiology, 12 (2): 185-206. doi: 10.4236/ojepi.2022.122016.
[30] Yangoua H., Azantsa B., Kuate D., Ntentie F., Nguedjo M., Nkougni J., Tchuente B., Ngondi J. and Oben J. (2019). Characterization of Dyslipidemia and Assessment of Atherogenic Risk amongst Cameroonian Living in Yaounde: A Cross Sectional Study. Journal of Biosciences and Medicines, 7: 35-50. doi: 10.4236/jbm.2019.77004.
[31] Moor V. J. A., Essama D. B., Agoons B. B., Bayem J. C., Marie N. G., Jingi A. M., Nkeck J. B. and Nonga B. N. (2022). Lipid Profile abnormalities observed in obese Cameroonian adults do not depend on their bmi or abdominal circumference. Archives of Clinical and Biomedical Research, 6 (1): 30-40.
[32] Navti L., Niba L., Aphrodite C. and Atanga M. (2022). An Assessment of Predisposing Factors of Atherogenic Dyslipidemia in an Urban Pediatric Population in Cameroon. Journal of Biosciences and Medicines 10: 1-18. doi: 10.4236/jbm.2022.107001.
[33] Bigna, J. J., Nansseu, J. R., Katte, J. C. and Noubiap, J. J. (2018). Prevalence of prediabetes and diabetes mellitus among adults residing in Cameroon: a systematic review and meta-analysis. Diabetes Research and Clinical Practice, 137: 109-118. doi: 10.1016/j.diabres.2017.12.005.
[34] International Diabetes Federation (2021). IDF diabetes atlas. 10th ed. Brussels: International Diabetes Federation. 141 pages. https: //diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.p
[35] Egbe T. O., Tsaku E. S., Tchounzou R. and Ngowe M. N. (2018). Prevalence and risk factors of gestational diabetes mellitus in a population of pregnant women attending three health facilities in Limbe, Cameroon: A cross-sectional study. Pan African Medical Journal, 31 (1). doi: 10.11604/pamj.2018.31.195.17177.
[36] Simeni N. S. R., Boombhi J., Etoa E. M. C., Tiodoung T. A., Jingi A. M., Nkem E. K., Mbono S. E. E. A, Ntsama E. M. J., Kengni K. O., Ninon T. M. A., Talbit N. S., Dehayem Y. M. and Sobngwi E. (2020). Prevalence of Diabetes and Associated Risk Factors among a Group of Prisoners in the Yaoundé Central Prison". Journal of Diabetes Research 2020: 5016327. doi: 10.1155/2020/5016327.
[37] Kuate D. B., Mbanya J. C., Kingue S., Tardif J. C., Choukem S. P., Perreault S., Fournier P., Ekundayo O., Potvin L., D'Antono B., Emami E., Cote R., Aubin M. J., Bouchard M., Khairy P., Rey E., Richard L., Zarowsky C., Mampuya W. M., Mbanya D., Sauvé S., Ndom P., Silva R. B. D., Assah F., Roy I. and Dubois C. A. (2019). Blood pressure and burden of hypertension in Cameroon, a microcosm of Africa: A systematic review and meta-analysis of population-based studies. Journal of Hypertension 37 (11): 2190-2199. doi: 10.1097/HJH.0000000000002165.
[38] Bika, L. E. C., Hermans, M. P., Bovet, P, van de Borne, P., Donnen, P., Leeman, M., Degaute, J. P., M'Buyamba-Kabangu, J. R., Hako, Y, Ndongo, A. S., Doumbe, J. N., Mbango, E., Lemogoum, D. (2020). Prevalence and determinants of blood pressure variability in pygmies of Southern region Cameroon. Journal of Hypertension 38 (11): 2198-2204. doi: 10.1097/HJH.0000000000002529.
[39] Nganou-Gnindjio C. N., Essama D. B., Nkeck J. R., Tchebegna P. Y., Tchatchouang K. M., Tankeu A. and Kamgno, J. (2021). Prevalence and factors associated with hypertension among school children and adolescents in urban and semi-urban areas in Cameroon. The Journal of Clinical Hypertension 23 (8): 1490-1497. doi: 10.1111/jch.14309.
[40] Agbor, D. T. (2022). Convention on Biological Diversity Post 2020 Target: A Critical Analyses of the Threat Posed by 30 X 30 Target, Devoid of a Human Rights Approach Towards Conservation to Land Rights in Developing Countries: Case Study Cameroon. American Journal of Environment and Climate, 1 (2): 92-99. doi: 10.54536/ajec.v1i2.628.
[41] Dakam W., Mintom P., Mbete C. and Nyangono B. C. F. (2022). Double burden of obesity and hypertension in the elderly: Cross-sectional study of prevalence and risk factors in Foumban, West Region, Cameroon. Journal of Food Science and Nutrition Research 5 (3): 612-621.
[42] Fokam D. K., Bita A. I. G., Dakenyo N. R. D., Agbornkwai N. A. and Negueu A. B. (2022). Obesity and high blood pressure among professional long-distance drivers in Yaoundé, Cameroon: Cross-sectional study. Occupational Diseases and Environmental Medicine, 10 (3): 232-254. doi: 10.4236/odem.2022.103018.
[43] Ntentie F. R., Nguedjo M. W., Mbong M. A. A., Tchuente B. R. T., Souavourbe P., Fotso H. M. T. and Oben, J. E. (2022). Prevalence of hypertension and its association with anthropometric indices among students of the University of Maroua (Far North Region, Cameroon). Asian Journal of Medical Principles and Clinical Practice, 5 (4): 92-102.
[44] Mayer C., Côme M., Ulmann L., Chini Zittelli G., Faraloni C., Nazih H., Ouguerram K., Chénais B., Mimouni V. (2019). Preventive effects of the marine microalga Phaeodactylum tricornutum, used as a food supplement, on risk factors associated with metabolic syndrome in wistar rats. Nutrients, 11: 1069. doi: 10.3390/nu11051069.
[45] Noubiap J. J., Nansseu J. R., Lontchi-Yimagou E., Nkeck J. R., Nyaga U. F., Ngouo A. T., Tounouga D. N., Tianyi F. L., Foka A. J. N, Ndoadoumgue A. L. i and Bigna J. J. 2022a. Global, regional and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis. The Lancet Child and Adolescent Health, 6 (3): 158-170. doi: 10.1016/S2352-4642(21)00374-6.
[46] Noubiap J. J., Nansseu J. R., Lontchi-Yimagou E., Nkeck J. R., Nyaga U. F., Ngouo A. T., Tounouga D. N., Tianyi F. L., Foka A. J. N, Ndoadoumgue A. L. i and Bigna J. J. 2022. Geographic distribution of metabolic syndrome and its components in the general adult population: a meta-analysis of global data from 28 million individuals. Diabetes Research and Clinical Practice, 109924. doi: 10.1016/j.diabres.2022.109924.
[47] Da Poian A. T., El-Bacha T. and Luz M. R. M. P. (2010). Nutrient Utilization in Humans: Metabolism Pathways. Nature Education 3 (9): 11.
[48] Kaushik S. (2020). Carbohydrate, protein and lipid metabolism. In Mukhopadhaya N., Pundir J. and Arora M. (Eds.), Part 1 MRCOG Revision Notes and Sample SBAs (pp. 227-245). Cambridge: Cambridge University Press. doi: 10.1017/9781108644396.037.
[49] Chakravarthy M. V. and Neuschwander-Tetri B. A. (2020). The metabolic basis of nonalcoholic steatohepatitis. Endocrinology, Diabetes and Metabolism, 3 (4): e00112. doi: 10.1002/edm2.112.
[50] Kojta I., Chacińska M. and Błachnio-Zabielska A. (2020). Obesity, bioactive lipids and adipose tissue inflammation in insulin resistance. Nutrients, 12 (5). doi: 10.3390/nu12051305.
[51] Liu Z., Wu K. K., Jiang X., Xu A. and Cheng K. K. (2020). The role of adipose tissue senescence in obesity-and ageing-related metabolic disorders. Clinical Science 134 (2): 315-330. doi: 10.1042/CS20190966.
[52] Saltiel, A. R. and Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. The Journal of Clinical Investigation, 127 (1): 1-4. doi: 10.1172/JCI92035.
[53] Scheja, L., Heeren, J. (2019). The endocrine function of adipose tissues in health and cardiometabolic disease. Nature Reviews Endocrinology, Nat Rev Endocrinol, 15: 507–524. doi: 10.1038/s41574-019-0230-6.
[54] Wang H. H., Lee D. K., Liu M., Portincasa P. and Wang, D. Q. (2020). Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatric Gastroenterology, Hepatology & Nutrition, 23 (3): 189-230. doi: 10.5223/pghn.2020.23.3.189.
[55] Grandl G. and Wolfrum C. (2018). Hemostasis, endothelial stress, inflammation and the metabolic syndrome. Seminar in Immunopathol, 40: 215-224. doi: 10.1007/s00281-017-0666-5.
[56] Varghese J. F., Patel R. and Yadav, U. (2018). Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis. Current Cardiology Reviews, 14 (1): 4-14. doi: 10.2174/1573403X13666171009112250.
[57] Moldogazieva N. T., Mokhosoev, I. M., Mel’nikova T. I., Porozov Y. B. and Terentiev A. A. (2019). Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxidative medicine and cellular longevity 2019: 3085756. doi: 10.1155/2019/3085756.
[58] Pitsavos C., Panagiotakos D., Weinem M., Stefanadis C. (2006). Diet, exercise and the metabolic syndrome. The Review of Diabetic Studies 2006 Fall, 3 (3): 118-26. doi: 10.1900/RDS.2006.3.118.
[59] Hoyas I. and Leon-Sanz M. (2019). Nutritional Challenges in Metabolic Syndrome. Journal of Clinical Medicine, 8: 1301. doi: 10.3390/jcm8091301.
[60] Jabczyk M., Nowak J., Hudzik B. and Zubelewicz-Szkodzińska B. (2021). Curcumin in Metabolic Health and Disease. Nutrients, 13 (12): 4440. doi: 10.3390/nu13124440.
[61] Halle M. P., Kom M. F., Kamdem F., Mouliom S., Fouda H., Dzudie A., Kaze F. F. and Ashuntantang E. G. (2020). Cardiovascular disease burden in patients with non-dialysis dependent chronic kidney disease in Cameroon: Case of the Douala General Hospital. Open Journal of Nephrology 10 (03): 101329. doi: 10.4236/ojneph.2020.103017.
[62] Mbouemboue, O. P., Touko, A. M., Haman, H. S., Amanissa, P. D., Damdam, F. B., Ngoufack, J. O. and Tamanji, M. T. (2017). One-year follow-up of the distribution of dyslipidemias among Cameroonian diabetic patients in Ngaoundere, 2014-2015. Cardiology and Angiology: An International Journal 6 (4): 1-9. doi: 10.9734/CA/2017/37773.
[63] Noumi E., Houngue F., Lontsi D. (1999). Traditional medicines in primary health care: plants used for the treatment of hypertension in Bafia, Cameroon. Fitoterapia 70: 134-139.
[64] Din N., Dibong S. D., Mpondo M. E., Priso R. J., Kwin M. F. and Ngoye A. (2011). Inventory and identification of plants used in the treatment of diabetes in Douala town (Cameroon). European Journal of Medicinal Plants 1 (3): 60-73.
[65] Koyeu T. E., Mendi G., Tchamago F. X., Tajeukem V. C., Franklin V. and Linda C. (2014). Ethnobotanic contribution of Cameroon: Anti- diabetic plants inventory in the Nkoung–Khi division West region Cameroon. Applied Science Reports 8 (3): 125-133.
[66] Tsabang N., Yedjou C. G., Tsambang L., Tchinda A. T., Donfagsiteli N., Agbor G. A., Tchounwou P. and Nkongmeneck B. A. (2015). Treatment of diabetes and/or hypertension using medicinal plants in Cameroon. Medicinal & aromatic plants, 2015 (Suppl 2): 003. doi: 10.4172/2167-0412.S2-003.
[67] Tsabang N., Tsambang D. W. L., Tsambang F. S. C. and Agbor A. G. 2016a. Ethnomedical and ethnopharmacological study of plants used for potential treatments of diabetes and arterial hypertension by indigenous people in three phytogeographic regions of Cameroon. Diabetes Case Report, 1 (2): 110. doi: 10.4172/2572-5629.1000110.
[68] Tsabang N., Ngah N., Estella F. T., Agbor G. A. 2016b. Herbal medicine and treatment of diabetes in Africa: Case study in Cameroon. Diabetes Case Rep 1 (2): 112.
[69] Tsabang N., Tsambang D. L. W., Yedjou C. G. and Tchounwou P. B. (2019). Importance of food plants in the prevention and treatment of diabetes in Cameroon. Bioactive Compounds in Health and Disease, 2 (2): 11-26. doi: 10.31989/bchd.v2i2.554.
[70] Epoh N. J., Matafack D. O. L., Tchouanguep M. F. and Telefo P. B. (2020). Ethnobotanical study of medicinal plants used as anti-obesity remedies in Foumban and Dschang cities (West-Cameroon). European Journal of Medicinal Plants, 31 (9): 54-70. doi: 10.9734/ejmp/2020/v31i930271.
[71] Tankeu S. E., Etame-Loe G. M., Fannang S. V., Ladoh Y. C. F., Ngouondjou F. T., Bamal H. and Ndongo D. (2021). Ethnobotanical studies of plants with antihypertensive properties in the city of Nkongsamba, Cameroon. Saudi Journal of Medical and Pharmaceutical Sciences, 7 (6): 251-261. doi: 10.36348/sjmps.2021.v07i06.005.
[72] Jiofack T., Fokunang C., Kemeuze V., Fongnzossie E., Tsabang N., Nkuinkeu R., Mapongmetsem P. M. and Nkongmeneck B. A. (2008). Ethnobotany and phytopharmacopoea of the South-West ethnoecological region of Cameroon. Journal of Medicinal Plants Research, 2 (8): 197-206.
[73] Focho D. A., Ndam W. T. and Fonge B. A. (2009). Medicinal plants of Aguambu – Bamumbu in the Lebialem highlands, southwest province of Cameroon. African Journal of Pharmacy and Pharmacology, 3 (1): 001-013.
[74] Jiofack T., Ayissi I., Fokunang C., Guedje N. and Kemeuze V. 2009a. Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon. African Journal of Pharmacy and Pharmacology, 3 (4): 144-150.
[75] Jiofack T., Fokunang C., Guedje N., Kemeuze V., Fongnzossie E., Nkongmeneck B. A., Mapongmetsem P. M. and Tsabang N. 2009b. Ethnobotanical uses of some plants of two ethnoecological regions of Cameroon. African Journal of Pharmacy and Pharmacology, 3 (13): 664-684.
[76] Ndenecho E. N. (2009). Herbalism and resources for the development of ethnopharmacology in Mount Cameroon region. African Journal of Pharmacy and Pharmacology, 3 (3): 078-086.
[77] Dibong S. D., Mpondo M. E., Ngoye A. and Kwin M. F. (2011). Plantes médicinales utilisées par les populations Bassa de la région de Douala au Cameroun. International Journal of Biological and Chemical Sciences, 5 (3): 1105-1117.
[78] Mpondo M. E. and Dibong S. D. (2012). Traditional knowledge on medicinal plants use by ethnic communities in Douala, Cameroon. European Journal of Medicinal Plants, 2 (2): 159-176.
[79] Ndah N. R., Enow E. A., Bechem E., Asaha S., Yengo T., Loh C. E. and Eyenieh N. M. (2013). Ethnobotanical study of commonly used medicinal plants of the Takamanda Rainforest South West, Cameroon. African Journal of Plant Science, 7 (1): 21-34. doi: 10.5897/AJPS12.111.
[80] Bayaga, H. N., Guedje NM, Ondoua, N. M. O., Njinkio, N. B. L., Ngameni, B,. Fokunang, C. and Ngadjui, T. B. (2021). Ethno Pharmacological Survey of the Medicinal Flora Used by Some Traditional Healers of Mbam and Inoubou Division (Cameroon). Saudi Journal of Medical and Pharmaceutical Sciences, 7 (9): 445-454. doi: 10.36348/sjmps.2021.v07i09.003.
[81] Nnanga, J. F., Sassou, C. B., Wouokoue, J. T., Todou, G., Tchobsala, D. and Moksia, F. (2022). Quantitative, phytomedicinal and ethnobotanical study of plants in the Far-north region of Cameroon: Case of Yagoua Sub-Division. Research Square, (2022). doi: 10.21203/rs.3.rs-2056855/v1.
[82] Dzeufiet D. P. D., Tadondjou T. C. D., Bilanda D. C., Aboubakar O. B. F., Kamtchouing P. and Dimo T. 2013). Endothelium-dependent and independent vasorelaxant effect of Terminalia superba (Combretaceae) on rat aorta. The Journal of Phytopharmacology, 2 (5): 21-27.
[83] Tom E. N. L., Demougeot, C., Mtopi, O. B., Dimo, T., Djomeni, P. D. D., Bilanda, D. C., Girard C. and Berthelot, A. (2011). The Extract of Terminalia superba (Combretaceae) prevents glucose-induced hypertension in rats. Journal of Ethnopharmacology, 133 (2): 828-833. doi: 10.1016/j.jep.2010.11.016.
[84] Tom E. N. L., Girard-Thernier, C., Martin, H., Dimo, T., Alvergnas, M., Nappey, M., Berthelot A. and Demougeot, C. (2014). Treatment with an extract of Terminalia superba Engler and Diels decreases blood pressure and improves endothelial function in spontaneously hypertensive rats. Journal of ethnopharmacology 151 (1): 372-379.
[85] Momo, C. E. N., Ngwa, A. F., Dongmo, G. I. F. and Oben, J. E. (2009). Antioxidant properties and α-amylase inhibition of Terminalia superba, Albizia sp., Cola nitida, Cola odorata and Harungana madagascarensis used in the management of diabetes in Cameroon. Journal of Health Science, 55 (5): 732-738. doi: 10.1248/jhs.55.732.
[86] Kamtchouing, P., Kahpui, S. M., Dzeufiet, D. P. D., Tédong, L., Asongalem, E. A. and Dimo, T. (2006). Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 104 (3): 306-309. doi: 10.1016/j.jep.2005.08.075.
[87] Dzeufiet, P. D. D., Mogueo, A., Bilanda, D. C., Aboubakar, B. F. O., Tédong, L., Dimo, T. and Kamtchouing, P. (2014). Antihypertensive potential of the extract which combine leaf of Persea americana Mill. (Lauraceae), stems and leaf of Cymbopogon citratus (DC) Stapf. (Poaceae), fruits of Citrus medical L. (Rutaceae) as well as honey in ethanol and sucrose experimental model. BMC complementary and alternative medicine, 14: 507. doi: 10.1186/1472-6882-14-507.
[88] Bilanda, D. C., Dzeufiet, P. D. D., Fouda, Y. B., Ngapout, R. F., Tcheutchoua, Y., Owona, P. E., Wouamba NS. C Tatchou T. L, Dimo T. and Kamtchouing, P. (2020). Antihypertensive and antidiabetic activities of Erythrina senegalensis DC (Fabaceae) stem bark extract on diabetic hypertensive rats. Journal of ethnopharmacology, 246: 112200. doi: 10.1016/j.jep.2019.112200.
[89] Nguelefack-Mbuyo E. P., Dongmo A. B., Nguelefack T. B., Kamanyi A., Kamtchouing P., Dimo T. (2012). "Endothelium/nitric oxide mediates the vasorelaxant and antihypertensive effects of the Extract from the stem bark of Mammea africana Sabine (Guttiferae)", Evidence-Based Complementary and Alternative Medicine, 2012: 961741. doi: 10.1155/2012/961741.
[90] Nguelefack-Mbuyo P. E., Nguelefack T. B., Dongmo A. B., Afkir S., Azebaze A. G. B., Dimo T. and Ziyyat A. (2008). Anti-hypertensive effects of the methanol/methylene chloride stem bark extract of Mammea africana in L-NAME-induced hypertensive rats. Journal of Ethnopharmacology, 117 (3): 446-450. doi: 10.1016/j.jep.2008.02.028.
[91] Tchamadeu, M. C., Dzeufiet, P. D. D., Nouga, C. K., Azebaze, A. G. B., Allard, J., Girolami, J. P., Tack I., Kamtchouing P. and Dimo, T. (2010). Hypoglycaemic effects of Mammea africana (Guttiferae) in diabetic rats. Journal of Ethnopharmacology, 127 (2): 368-372. doi: 10.1016/j.jep.2009.10.029.
[92] Azantsa, B. K. G, Ntentie, F. R., Mbong, A. M. A., Mafongang, A, Kamtchoum, A., Momo, C., Chimou, N. L., Fonkoua, M., Edoun, E. F., Ngondi, J. L. and Oben, J. E. (2022). Lipomodulatory and anti-oxidative stress effects of a polyherbal formulation based on garlic and avocado seeds extracts on high fat high sucrose diet fed rats. Metabolism open, 15: 100195. doi: 10.1016/j.metop.2022.100195.
[93] Yetendje, L. C., Njateng, G. S. S., Dongmo, A. J. A., Mouokeu, R. S., Feudjio, C., Tamekou, S. L. and Iqbal, J. (2019). In vivo antidiabetic activity and mechanism of action of three Cameroonian medicinal plant extracts. International Journal of Research–Granthaalayah 7 (8): 415-430.
[94] Njateng G. S., Zaib S., Chimi L. Y., Feudjio C., Mouokeu R. S., Gatsing D., Kuiate J. R., Adewole E., Iqbal J. (2018). Antidiabetic potential of methanol extracts from leaves of Piper umbellatum L. and Persea americana Mill. Asian Pacific Journal of Tropical Biomedicine, 8 (3): 160-165. https: //www.apjtb.org/text.asp?2018/8/3/160/227997
[95] Kuate, D., Etoundi, O. B. C., Ngondi, J. L. and Oben, J. E. (2011). Effects of Dichrostachys glomerata spice on cardiovascular diseases risk factors in normoglycemic and type 2 diabetic obese volunteers. Food research international, 44 (5): 1197-1202. doi: 10.1016/j.foodres.2010.09.037.
[96] Kuate, D., Etoundi, O. B. C., Ngondi, J. L., Muda, W. and Oben, J. E. (2013). Anti-inflammatory, anthropometric and lipomodulatory effects Dyglomera® (Extract of Dichrostachys glomerata) in obese patients with metabolic syndrome. Functional Foods in Health and Disease, 3 (11): 416-427. doi: 10.31989/ffhd.v3i11.35.
[97] Ngatchic M. T. J., Douanla N. F. N., Ndjantou E. B., Njintang Y. N. (2020). Lipid-lowering and anti-lipase properties of powder fractions of Dichrostachys glomerata fruits. Asian Journal of Medical Sciences, 11 (5): 69-76.
[98] Etoundi, C. B., Kuaté, D., Ngondi, J. L. and Oben, J. (2010). Anti-amylase, anti-lipase and antioxidant effects of extracts of some Cameroonian spices. Journal of Natural Products, 3 (165): 17.
[99] Nwakiban A. P. A, Sokeng A. J., Dell'Agli M., Bossi L., Beretta G., Gelmini F., Deutou T. A., Agbor A. G., Kuiaté J. R. and Magni P. (2019). Hydroethanolic plant extracts from Cameroon positively modulate enzymes relevant to carbohydrate/lipid digestion and cardio-metabolic diseases. Food and function, 10 (10): 6533-6542. doi: 10.1039/C9FO01664C.
[100] Nwakiban A. A. P., Passarelli A., Da Dalt L., Olivieri C., Demirci T. N., Piazza S., Sangiovanni E., Carpentier-Maguire E., Martinelli G., Shivashankara S. T., Manjappara U. V., Tchamgoue A. D., Agbor G. A., Kuiate J. R., Daglia M., Dell’A. M., Magni P. (2021). Cameroonian spice extracts modulate molecular mechanisms relevant to cardiometabolic diseases in SW 872 human Liposarcoma cells. Nutrients, 13: 4271. doi: 10.3390/nu13124271.
[101] Dongmo, O. L. M., Ashu, E. L. A., Tadjoua, H. T., Epoh, N. J., Njina, S. N., Tapondjou, L. A. and Telefo, P. B. (2019). Evaluation of anti-obesity and diuretic effects of Extract of Tetrapleura tetraptera Taub. stem bark on high fat diet-induced obese rats. European Journal of Pharmaceutical and Medical Research, 6 (1): 27-37.
[102] Kuate, D., Kengne, A. P. N., Biapa, C. P. N., Azantsa, B. G. K. and Wan M. W. A. M. B. (2015). Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids in Health and Disease, 14 (1): 1-13. doi: 10.1186/s12944-015-0051-0.
[103] Eyenga, M., Takuissu, N. G. R., Ziyyat, A., Ngondi, J. L. and Sindic, M. (2020). Hypoglycaemic activity of preheated (roasting) Aframomum citratum (C. Pereira) K. Schum and Tetrapleura tetraptera (Schumach and Thonn.) fruits beverage on Streptozotocin-induced rats. Journal of Pharmacognosy and Phytotherapy, 12 (2): 44-61. doi: 10.5897/JPP2019.0570.
[104] Tcheutchoua, Y. C., Bilanda, D. C., Dzeufiet, P. D. D., Djunie Neali, O. C., Owona, P. E., Ngapout, R. F., Noubom M., Dimo T. and Kamtchouing, P. (2022). Preventive potential of the Extract of the mixture of Bidens pilosa (Asteraceae) and Cymbopogon citratus (Poaceae) aerial parts on hypertension induced by a chronic salt and alcohol consumption on the rats. Evidence-Based Complementary and Alternative Medicine, 2022: 1980622. doi: 10.1155/2022/1980622.
[105] Massa Z. B., Ngueguim T. F., Gounoue K. R., Fouda B Y, Wendja N M A and Dimo T. (2021). Antidiabetic effects of Extract of Baillonella toxisperma Pierre (Sapotacae) in streptozotocin-induced diabetic rats. Journal of Medicinal Plants Studies, 9 (4): 28-37 doi: 10.22271/plants.2021.v9.i4a.1308.
[106] Nguélé, L. R., Fokunang, C. and Etoundi, C. B. (2012). Control of some composants of metabolic syndrome by hydroetanolic extracts of Aframomum aulacocorpus, A. citratum and A. daniellii (Hook. F) K. Schum. Health Sciences and Disease, 13 (3).
[107] Sokeng, S. D., Lontsi, D., Moundipa, P. F., Jatsa, H. B., Watcho, P. and Kamtchouing, P. (2007). Hypoglycemic effect of Anacardium occidentale L. methanol extract and fractions on streptozotocin-induced diabetic rats. Global Journal of Pharmacology, 1 (1): 1-5.
[108] Tedong, L., Madiraju, P., Martineau, L. C., Vallerand, D., Arnason, J. T., Desire, D. D., Lavoie L., Kamtchouing P and Haddad, P. S. (2010). Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells. Molecular nutrition and food research, 54 (12): 1753-1762. doi: 10.1002/mnfr.201000045.
[109] Tedong, L., Dzeufiet, P. D. D., Asongalem, A. E., Sokeng, D. S., Callard, P. and Kamtchouing, P. (2006). Antihyperglycemic and renal protective activities of Anacardium occidentale (Anacardiaceae) leaves in streptozotocin induced diabetic rats. African Journal of Traditional, Complementary and Alternative Medicines, 3 (1): 23-35.
[110] Kamtchouing, P., Sokeng, S. D., Moundipa, P F., Watcho, P., Jatsa, H. B. and Lontsi, D. (1998). Protective role of Anacardium occidentale extract against streptozotocin-induced diabetes in rats. Journal of ethnopharmacology, 62 (2): 95-99. doi: 10.1016/S0378-8741(97)00159-1.
[111] Dimo, T., Rakotonirina, S. V., Tan, P. V., Azay, J., Dongo, E., Kamtchouing, P. and Cros, G. (2007). Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/methanol extract on streptozotocin-diabetic rats. Journal of Ethnopharmacology, 110 (3): 434-438. doi: 10.1016/j.jep.2006.10.020.
[112] Nyunaï, N., Njikam, N., Abdenneb, E., Mbafor, J. and Lamnaouer, D. (2009). Hypoglycaemic and antihyperglycaemic activity of Ageratum conyzoides L. in rats. African Journal of Traditional, Complementary and Alternative Medicines, 6 (2). doi: 10.4314/ajtcam.v6i2.57083.
[113] Nyunaï, N., Manguelle-Dicoum, A., Njifutié, N., Abdennebi, E. H. and Gerard, C. (2010). Antihyperglycaemic effect of Ageratum conyzoides L. fractions in normoglycemic and diabetic male wistar rats. International Journal of Biomedical and Pharmaceutical Sciences, 4 (1): 38-42.
[114] Nyunaï N., Abdennebi E. H., Bickii J. and Manguelle-Dicoum M. A. (2015). Subacute antidiabetic properties of Ageratum conyzoides leaves in diabetic rats. International Journal of Pharmaceutical Sciences and Research, 6 (4): 1378-1387. doi: 10.13040/IJPSR.0975-8232.6(4).1378-87.
[115] Kamani, S. P., Waguia, J. K., Miaffo, D., Nchouwet, M., Kadji, C. D., Kamgaing, M. W., Douho D. J., Mzoyem N. A. K., Wansi N. S. and Ngnokam, S. W. (2022). Efficacy of Emilia coccinea extract on inhibition of α-amylase enzyme activity and insulin resistance in dexamethasone treated-rats. Metabolism Open, 100193. doi: 10.1016/j.metop.2022.100193.
[116] Moukette, B. M., Ama, M. V. J., Biapa, N. C. P., Nanfack, P., Nzufo, F. T., Kenfack, M. A., Ngongang Y. J. and Pieme, C. A. (2017). Antioxidant and synergistic antidiabetic activities of a three-plant preparation used in Cameroon folk medicine. International scholarly research notices, 2017: 9501675. doi: 10.1155/2017/9501675.
[117] Fofie, C. K., Wansi, S. L., Nguelefack-Mbuyo, E. P., Atsamo, A. D., Watcho, P., Kamanyi, A., Nole, T. and Nguelefack, T. B. (2014). In vitro anti-hyperglycemic and antioxidant properties of extracts from the stem bark of Ceiba pentandra. Journal of Complementary and Integrative Medicine, 11 (3): 185-193. doi: 10.1515/jcim-2014-0031.
[118] Nguelefack T. B., Fofie K. C., Nguelefack-Mbuyo E. P., Kaptue W. A. (2020). Multimodal α-Glucosidase and α-Amylase Inhibition and Antioxidant Effect of the Aqueous and Methanol Extracts from the Trunk Bark of Ceiba pentandra. BioMed Research International, 2020: 3063674. doi: 10.1155/2020/3063674.
[119] Djomeni, P. D. D., Tédong, L., Asongalem, E. A., Dimo, T., Sokeng, S. D. and Kamtchouing, P. (2006). Hypoglycaemic and antidiabetic effect of root extracts of Ceiba pentandra in normal and diabetic rats. African Journal of Traditional, Complementary and Alternative Medicines, 3 (1). doi: 10.4314/ajtcam.v3i1.31147.
[120] Dzeufiet, P. D. D., Ohandja, D. Y., Tédong, L., Asongalem, E. A., Dimo, T., Sokeng, S. D. and Kamtchouing, P. (2007). Antidiabetic effect of Ceiba pentandra extract on streptozo-tocin-induced non-insulin-dependent diabetic (NIDDM) rats. African Journal of Traditional, Complementary and Alternative Medicines, 4 (1): 47-54. doi: 10.4314/ajtcam.v4i1.31191.
[121] Kouambou, C., Dimo, T., Dzeufiet, P., Ngueguim, F., Tchamadeu, M., Wembe, E. and Kamtchouing, P. (2007). Antidiabetic and hypolipidemic effects of Canarium schweinfurthii hexane bark extract in streptozotocin-diabetic rats. PharmacologyOnline 1: 209-219.
[122] Njapndounke, B., Kouam, M. E. F., Boungo, G. T., Klang, J. M. and Ngoufack, F. Z. (2021). Optimization of production conditions of biscuit from Musa sapientum flour (‘banane cochon’): Nutritional composition and glycaemic index of the optimized biscuit. Journal of Agriculture and Food Research, 6: 100229. doi: 10.1016/j.jafr.2021.100229.
[123] Ngondi J. L., Makamto S. C. and Oben J. E. (2005). Irvingia Gabonensis on Body weight and bloods lipids in normolipidemic guinea pigs. Journal of Food Technology, 3: 472-474.
[124] Ngondi, J. L., Oben, J. E. and Minka, S. R. (2005). The effect of Irvingia gabonensis seeds on body weight and blood lipids of obese subjects in Cameroon. Lipids in health and Disease, 4 (1): 1-4. doi: 10.1186/1476-511X-4-12.
[125] Ngondi, J. L., Fossouo, Z., Djiotsa, E. J. and Oben, J. E. (2006). Glycaemic variations after administration of Irvingia gabonensis seeds fractions in normoglycemic rats. African Journal of Traditional, Complementary and Alternative Medicines, 3 (4): 94-101. doi: 10.4314/ajtcam.v3i4.31181.
[126] Oben, J. E., Ngondi, J. L. and Blum, K. (2008). Inhibition of Irvingia gabonensis seeds extract (OB131) on adipogenesis as mediated via down regulation of the PPARgamma and leptin genes and up-regulation of the adiponectin gene. Lipids in Health and Disease, 7 (1): 1-6. doi: 10.1186/1476-511X-7-44.
[127] Oben, J. E., Ngondi, J. L., Momo, C. N., Agbor, G. A. and Sobgui, C. S. M. (2008). The use of a Cissus quadrangularis/Irvingia gabonensis combination in the management of weight loss: a double-blind placebo-controlled study. Lipids in Health and Disease, 7 (1): 1-7. doi: 10.1186/1476-511X-7-12.
[128] Hossain, M. S., Sokeng, S., Shoeb, M., Hasan, K., Mosihuzzaman, M., Nahar, N., Ali, L. and Rokeya, B. (2012). Hypoglycemic effect of Irvingia gabonensis (Aubry-Lacomate Ex. Ororke), Baill in type 2 diabetic long-evans rats. Dhaka University Journal of Pharmaceutical Sciences, 11 (1): 19-24. http: //dx.doi.org/10.3329/dujps.v11i1.12482
[129] Woguia, A. L., Ngondi, J. L. and Oben, J. E. (2011). Effect of two Cameroonian plants mucilage on food intake, body weight gain, lipidemic and oxidative status in rats fed high-fat diet. Canadian Journal of Diabetes, 35 (2): 175-176. doi: 10.1016/S1499-2671(11)52138-0.
[130] Matsinkou, R. S., Ngondi, J. L., Kuate, D., Mbofung, C. and Oben, J. E. (2012). Antioxidant and anti-hyperglycemic potential of pulp extracts of Irvingia wombolu fruits. Biology and Medicine 4 (1): 10-19.
[131] Deutchoua N. E. M., Mang Y. D., Dongmo F., Youdom P., Sokeng D. S., Njintang Y. N. (2021). Effect of Extract of Linn. leaves on the onset of Clerodendrum thomsoniae hyperlipidaemia and the inhibition of gain mass on wistar rats. Asian Journal of Pharmacy and Pharmacology, 7 (6): 247-255. doi: 10.31024/ajpp.2021.7.6.2.
[132] Nkepndep T. S. V., Dongho D. F. F., Lienou L. L., Maffo T. G., Djeukeu A. W., Manz K. J. C., Bogning Z. C., Mbiatat H. D. G., Ebelle E. R. M., Gouado I. (2022). In vitro and In vivo antioxidant and antiobesogenic properties of Extracts of Hibiscus sabdariffa, Zingiber officinale and Mentha spicata in Wistar high-fat diet rats. J Food Nutr Sc. 10 (5): 151–164. doi: 10.11648/j.jfns.20221005.11.
[133] Feudjio, C., Sedar, G., Njateng, S. and Kuiate, J. (2018). Evaluation of antidiabetic activity of extract of leaves from Phragmanthera capitata (Sprengel) S. Balle (Laurenthaceae) in Wistar albino Rats. Journal of Diseases and Medicinal Plants, 4 (4): 96-109. doi: 10.11648/j.jdmp.20180404.11.
[134] Tchamadeu, M. C., Dzeufiet, P. D. D., Blaes, N., Girolami, J. P., Kamtchouing, P. and Dimo, T. (2017). Antidiabetic effects of aqueous and dichloromethane/methanol stem bark extracts of Pterocarpus soyauxii Taub (Papilionaceae) on streptozotocin-induced diabetic rats. Pharmacognosy research, 9 (1): 80.
[135] Takem L. P., Lawal B. A. S., Udia P. M., Udoh F. V. (2015). Assessment of glycaemic property of Phragmanthera capitata. Ijppr. Human 4 (4): 1-8.
[136] Takem, L. P., Essien, A. D., Udia, P. M. and Anele, E. I. 2015b. Evaluation of lipogenic property of Phragmanthera capitata in diabetic rats. The Journal of Phytopharmacology, 4 (6): 299-302.
[137] Nguekouo, P. T., Kuate, D., Kengne, A. P. N., Woumbo, C. Y., Tekou, F. A. and Oben, J. E. (2018). Effect of boiling and roasting on the antidiabetic activity of Abelmoschus esculentus (Okra) fruits and seeds in type 2 diabetic rats. Journal of Food Biochemistry, 42 (6): e12669. doi: 10.1111/jfbc.12669.
[138] Njike, G. N., Watcho, P. and Kamanyi, A. (2005). Hypoglycaemic activity of the leaves extracts of Bersama engleriana in rats. African Journal of Traditional, Complementary and Alternative Medicines, 2 (3): 215-221.
[139] Watcho P., Achountsa J. H. G., Mbiakop C. U., Wankeu N. M., Nguelefack T. B. and Kamanyi A. (2012). Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complementary Medicine and Therapies, 12: 264. doi: 10.1186/1472-6882-12-264.
[140] Ngueguim T. F., Dimo T., Dzeufiet D. P. D., Vouffo B., Dongo E., Renaud B., Asongalem A. E., Zapfack L. and Kamtchouing P. (2007). Antidiabetic activities of methanol-derived extract of Dorstenia picta twigs in normal and streptozotocin-induced diabetic rats. Asian Journal of Traditional Medicines, 2 (4): 140-148.
[141] Kolefer, K., Miaffo, D. and Ponka, R. (2021). Evaluation of antidiabetic properties of the leaves extract of Ficus vallis-choudae Delile in a model of type 2 diabetes induced by high-fat diet and streptozotocin. The Scientific World Journal, 2021: 1502230. doi: 10.1155/2021/1502230.
[142] Njapndounke, B., Saah, M. B. D., Kouam, M. E. F., Boungo, G. T. and Ngoufack, F. Z. (2021). Optimum biscuit from Musa sapientum L. and Vigna unguiculata L. composite flour: effect on pancreatic histology, biochemical and hematological parameters of diabetic rats. Heliyon, 7 (9): e07987. doi: 10.1016/j.heliyon.2021.e07987.
[143] Mballa, L. E. D., Yadang, F. S., Tchamgoue, A. D., Mba, J. R., Tchokouaha, L. R., M Biang, E., Tchinda T. A., Djomeni D. D. P. and Agbor, G. A. (2021). Cafeteria diet-induced metabolic and cardiovascular changes in rats: The role of Piper nigrum leaf extract. Evidence-Based Complementary and Alternative Medicine, 2021: 5585650. doi: 10.1155/2021/5585650.
[144] Domekouo, U. L., Longo, F., Tarkang, P. A., Tchinda, A. T., Tsabang, N., Donfagsiteli, N. T., Tamze V., Kamtchouing, P. and Agbor, G. A. (2016). Evaluation of the antidiabetic and antioxidant properties of Morinda lucida stem bark extract in streptozotocin intoxicated rats. Pakistan journal of pharmaceutical sciences, 29 (3): 903-911.
[145] Fouda, Y. B., Tom, E. N. L., Atsamo, A. D., Bonabe, C. and Dimo, T. (2020). Effects of stem bark Extract of Fagara tessmannii Engl (Rutaceae) on cardiovascular risks related to monosodium glutamate-induced obesity in rat: In vivo and In vitro assessments. Journal of ethnopharmacology, 260: 112972. doi: 10.1016/j.jep.2020.112972.
[146] Miaffo, D., Guessom Kamgue, O., Ledang Tebou, N., Maa T. C. and Kamanyi, A. (2019). Antidiabetic and antioxidant potentials of Vitellaria paradoxa barks in alloxan-induced diabetic rats. Clinical Phytoscience, 5 (1): 1-8. doi: 10.1186/s40816-019-0141-z.
[147] Miaffo, D., Ntchapda, F., Mahamad, T. A., Maidadi, B. and Kamanyi, A. (2021). Hypoglycemic, antidyslipidemic and antioxydant effects of Vitellaria paradoxa barks extract on high-fat diet and streptozotocin-induced type 2 diabetes rats. Metabolism Open, 9: 100071. doi: 10.1016/j.metop.2020.100071.
[148] Kasali, F. M., Fokunang, C. N., Ngoupayo, J., Tembe-Fokunang, E., Ngameni, B., Njinkio, B., Frederick K., Justin N., Tsague M, Oyono V., Mbacham W. and Ngadjui, B. T. (2016). Evaluation of the antidiabetic properties of hydro-alcoholic extract and its fractions from Physalis peruviana L. leaves on streptozotocin-induced diabetic Wistar rats. Journal of Diseases and Medicinal Plants, 2 (6): 67-73.
[149] Fokunang, C. N., Mushagalusa, F. K., Tembe-Fokunang, E., Ngoupayo, J., Ngameni, B., Njinkio, L. N., Kadima J. N., Kechia F., Atogho-Tiedeu A. B., Mbacham W. F. and Ngadjui, B. T. (2017). Phytochemical and zootechnical studies of Physalis peruviana L. leaves exposured to streptozotocin-induced diabetic rats. Journal of Pharmacognosy and Phytotherapy, 9 (8): 123-130. doi: 10.5897/JPP2016.0418.
[150] Dakam, W., Biyegue, C. F. N., Fannang, S. V. and Oben, J. E. (2021). Leaf extracts of Glyphaea brevis attenuate high blood glucose and lipids in diabetic rats induced with streptozotocin. Pharmacognosy Research, 13 (2). doi: 10.4103/pr.pr_99_20.
[151] Momo C. E. N., Oben J. E., Tazoo D. and Dongo E. (2006). Antidiabetic and hypolipidaemic effects of a methanol/methylene-chloride extract of Laportea ovalifolia (Urticaceae), measured in rats with alloxan-induced diabetes. Annals of Tropical Medicine and Parasitology, 100 (1): 69-74, doi: 10.1179/136485906X78517.
[152] Deutchoua E. M., Mang Y. D., Sokeng D. S. and Njintang Y. N. (2020). Hypolipidemic and antioxidant activity of Extract of Clerodendrum thomsoniae Linn. (Verbenaceae) leaves in albino rats, Rattus norvegicus (Muridae). Journal of Pharmacognosy and Phytochemistry, 9 (1): 595-602.
[153] Talba, M. A., Miaffo, D., Poualeu K. S. L., Kamanyi, A. and Wansi, S. L. (2019). Antioxidant properties and digestive enzyme inhibitory activity of the Extract from leafy stems of Cissus polyantha. Evidence-Based Complementary and Alternative Medicine, 2019: 7384532. doi: 10.1155/2019/7384532.
[154] Mahamad, A. T., Miaffo, D., Poualeu Kamani, S. L., Mahamat, O., Kamanyi, A. and Wansi Ngnokam, S. L. (2020). Glucose, lipid and oxidative stress lowering activity of the Extract from leafy stems of Cissus polyantha Gilg and Brandt in dexamethasone-induced hyperglycemia in rats. Journal of Diabetes and Metabolic Disorders, 19 (2): 1527-1535. doi: 10.1007/s40200-020-00687-x.
[155] Oben, J., Kuate, D., Agbor, G., Momo, C. and Talla, X. (2006). The use of a Cissus quadrangularis formulation in the management of weight loss and metabolic syndrome. Lipids in Health and Disease, 5 (1): 1-7. doi: 10.1186/1476-511X-5-24.
[156] Oben, J. E., Enyegue, D. M., Fomekong, G. I., Soukontoua, Y. B. and Agbor, G. A. (2007). The effect of Cissus quadrangularis (CQR-300) and a Cissus formulation (CORE) on obesity and obesity-induced oxidative stress. Lipids in Health and Disease, 6 (1): 1-8. doi: 10.1186/1476-511X-6-4.
[157] Nash, R., Azantsa, B., Kuate, D., Singh, H. and Oben, J. E. (2019). The use of a stem and leaf Extract of Cissus quadrangularis (CQR-300) to reduce body fat and other components of metabolic syndrome in overweight participants. The Journal of Alternative and Complementary Medicine, 25 (1): 98-106. doi: 10.1089/acm.2018.0016.
[158] Ntchapda, F., Bonabe, C., Atsamo, A. D., Azambou, D. R. K., Fouda, Y. B., Djibrine, S. I., Seke E. Paul F. and Théophile, D. (2020). Effect of Extract of Adansonia digitata stem bark on the development of hypertension in L-NAME-induced hypertensive rat model. Evidence-based Complementary and Alternative Medicine, 2020. doi: 10.1155/2020/3678469.
[159] Bilanda, D. C., Dimo, T., Djomeni, P. D. D., Bella, N. M. T., Aboubakar, O. B. F., Nguelefack, T. B. and Kamtchouing, P. (2010). Antihypertensive and antioxidant effects of Allanblackia floribunda Oliv. (Clusiaceae) Extract in alcohol-and sucrose-induced hypertensive rats. Journal of ethnopharmacology, 128 (3), 634-640. doi: 10.1016/j.jep.2010.02.025.
[160] Bilanda, D. C., Dzeufiet, D. P. D., Bopda, A. M., Kamtchuoing, P. and Dimo, T. (2018). Allablanckia floribunda hypotensive activity on ethanol induced hypertension in rat. The Journal of Phytopharmacology 7 (2): 146-151.
[161] Sonfack, C. S., Nguelefack-Mbuyo, E. P., Kojom, J. J., Lappa, E. L., Peyembouo, F. P., Fofié, C. K., Tsabang N., Nguelefack T. B. and Dongmo, A. B. (2021). The Extract from the stem bark of Garcinia lucida Vesque (Clusiaceae) exhibits cardioprotective and nephroprotective effects in adenine-induced chronic kidney disease in rats. Evidence-Based Complementary and Alternative Medicine 2021: 5581041. doi: 10.1155/2021/5581041.
[162] Etaga N. B., Nzekuie Q. S., Ayina A. C. N., Tchamadeu M. C., Mekoulou N. J., Bika L. C. E., Nde Z., Bilog N. C., Mbock A. J., Dongmo A. B. and Mandengue S. H. 2021a. Effects of some varieties of Ananas comosus on obesity and insulin resistance induced by oxidised palm oil and sucrose diet in albino rats. International Journal of Food and Nutritional Science 8 (1): 33-40. doi: 10.15436/2377-0619.21.3802.
[163] Etaga B. N., Selakong N. Q., Etoundi O. C. B., Mekoulou N. J., Bika L. C. E., Aicha D. N., Ngaha M. I., Bilog N. C., Bogning Z. C., Mbock A. J., Endougou E. A. M., Dongmo A. B., Bongue B., Mandengue S. H., Ayina A. C. N. 2021b. Carica papaya’s varieties improved obesity, insulin resistance and atherogenic risk in rats fed with oxidised palm oil and sucrose diet. International Journal of Nutrition and Food Sciences, 10 (5): 108-116. doi: 10.11648/j.ijnfs.20211005.13.
[164] Miaffo, D., Poualeu, S. L. K. and Kamanyi, A. (2014). Antidiabetic activity of the methanol and acetone extracts of twigs of Combretum molle in dexamathasone induced-insulin resistance in rats. World Journal of Pharmaceutical Sciences, 955-965.
[165] Njomen, G. B., Kamgang, R., Soua, P. R., Oyono, J. L. and Njikam, N. (2009). Protective effect of methanol-methylene chloride extract of Terminalia glaucescens leaves on streptozotocin-induced diabetes in mice. Tropical Journal of Pharmaceutical Research, 8 (1): 19-26. doi: 10.4314/tjpr.v8i1.14708.
[166] Woumbo, C. Y., Kuate, D. and Womeni, H. M. (2017). Cooking methods affect phytochemical composition and anti-obesity potential of soybean (Glycine max) seeds in Wistar rats. Heliyon, 3 (8): e00382. doi: 10.1016/j.heliyon.2017.e00382.
[167] Nkeng-Asong, B., Fokunang, T. E., Borgia, N. N., Grace, M., Bathelemy, N., Yves, T. O., Ngudjoe E. M., Ndikum V. N., Ngadjui B. T. and Ntungwen, F. C. (2019). Pytochemical Characterization, evaluation of the anti-diabetic activity and acute toxicity of Azadirachta indica (Meliaceae) seeds oil in Wistar rat models. Asian Journal of Research in Medical and Pharmaceutical Sciences, 6 (4): 1-14. doi: 10.9734/ajrimps/2019/v6i430109.
[168] Zofou D. Z. D., Pascal F. P. T. M. F., Manfo T., Mofor C. T. M. C. T., Lum P. L. P., Nebangwa D. N. N. D. N. and Assob N. J. C. (2017). Antidiabetic and safety evaluation of Afya tea® (Extract of Moringa oleifera Lam.) in streptozotocin-rat model. International Journal of Indigenous Herbs and Drugs, 2 (5): 1-10.
[169] Mbouche F. M. J., Tatsadjieu N. L. and Ndjouenkeu, R. (2021). Ipomea batatas leaf powder from Cameroon: antioxidant activity and antihyperlipidemic effect in rats fed with a high-fat diet. Journal of Lipids, 2021: 5539878. doi: 10.1155/2021/5539878.
[170] Choumessi T. A., Nkwenti C. H. A., Soh D., Mbouh M., Atsamo A. D. (2021). Anti-obesity effects of the methanol extract of Momordica foetida (Cucurbitaceae) in male Wistar rats. International Journal of Pharmacy and Pharmaceutical Sciences, 13 (6): 31-35.
[171] Nyangono B. C. N., Ngangoum, R. C., Kuate, D., Ngondi, J. L. and Oben, J. E. (2012). Effect of Guibourtia tessmannii extracts on blood lipids and oxidative stress markers in triton WR 1339 and high fat diet induced hyperlipidemic rats. Biology and Medicine, 4 (1): 1-10. doi: 10.4172/0974-8369.1000152.
[172] Mbappe, F. E., Ebouel, F. L. E., Ella, F. A., Akamba, B. D. A., Nanhah, J. K., Gouado, I. and Ngondi, J. L. (2022). Effect of Beilschmedia obscura on the prevention of high fat/high sucrose diet induced metabolic syndrome on male Albino Wistar rats. Metabolism Open, 13: 100156. doi: 10.1016/j.metop.2021.100156.
[173] Ntchapda, F., Djedouboum, A., Talla, E., Dongmo, S. S., Nana, P., Adjia, H, Nguimbou R. M., Gaimatakon S., Njintang Y. N. and Dimo, T. (2015). Hypolipidemic and anti-atherogenic effect of Extract leaves of Ficus glumosa (Moraceae) in rats. Experimental gerontology, 62: 53-62. doi: 10.1016/j.exger.2014.12.015.
[174] Bopda, O. S. M., Longo, F., Bella, T. N., Edzah, P. M. O., Taïwe, G. S., Bilanda, D. C., Tom, E. N. L., Kamtchouing P. and Dimo, T. (2014). Antihypertensive activities of the Extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats. Journal of ethnopharmacology, 153 (2): 400-407. doi: 10.1016/j.jep.2014.02.041.
[175] Kamgang, R., Youmbi Mboumi, R., Foyet Fondjo, A., Fokam Tagne, M. A., Mengue N. G. P. R. and Ngogang Y. J. (2008). Antihyperglycaemic potential of the water–ethanol extract of Kalanchoe crenata (Crassulaceae). Journal of Natural Medicines, 62 (1): 34-40. doi: 10.1007/s11418-007-0179-y.
[176] Tuem, S. R., Ndomou, M., Manz, K. J. C., Nchoutpouen, N. M. and Gouado, I. (2021). Effect of aqueous and methanolic extracts of Solanum aethiopicum Linn Gilo (Solanaceae) leaves on body weight and Glycemia in rats with alloxan-induced diabetes. Journal of Pharmacognosy and Phytochemistry, 10 (5): 142-146.
[177] Ngueguim T. F., Massa Z. B., Kouamouo J., Tchuidjang A., Dzeufiet D. P. D., Kamtchouing P., Dimo T. (2014). Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), Extract on streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 151 (2): 784-790. doi: 10.1016/j.jep.2013.09.021.
[178] Nkono, B. L. N. Y., Sokeng, S. D., Désiré, D. D. P. and Kamtchouing, P. (2014). Antihyperglycemic and antioxydant properties of Alstonia boonei De wild. (Apocynaceae) stem bark Extract in dexamethasone-induced hyperglycemic rats. International Journal of Diabetes Research, 3 (3): 27-35.
[179] Tazon, W. A., Fonkoua, M., Zali, M. A., Janvier, Y., Takuissu G. G., Makamwe, I. and Azantsa K. G. (2022). In vitro and In vivo evaluation of the anti-diabetic, anti-hyperlipidemic and antioxidant properties of Extract of Millettia laurentii bark (Fabaceae). Journal of Medicinal Herbs, 13 (1): 37-48. doi: 10.30495/MEDHERB.2022.692032.
[180] Miaffo, D., Ntchapda, F., Kamgue, O. G., Mahamad, A. T. and Kamanyi, A. (2020). Glucose-lowering potential of Guiera senegalensis roots in a diabetic rat model. Avicenna Journal of Phytomedicine, 10 (6): 653.
[181] Dimo, T., Azay, J., Tan, P. V., Pellecuer, J., Cros, G., Bopelet, M. and Serrano, J. J. (2001). Effects of the aqueous and methylene chloride extracts of Bidens pilosa leaf on fructose-hypertensive rats. Journal of Ethnopharmacology, 76 (3): 215-221. doi: 10.1016/S0378-8741(01)00229-X.
[182] Oumarou, B. A., Ndzana, M. B., Toma, E. N. L., Bilanda, D. C. and Dimo, T. (2012). Antihypertensive activity of Jateorhiza macrantha (Menispermaceae). Extract On Ethanol-Induced Hypertension In Wistar. International Journal of Pharmacy and Pharmaceutical Sciences, 4 (2): 293-298.
[183] Bilanda, D. C., Tcheutchoua, Y. C., Dzeufiet, P. D. D., Fokou, D. L. D., Fouda, Y. B., Dimo, T. and Kamtchouing, P. (2019). Antihypertensive Activity of Leersia hexandra Sw. (Poaceae) Extract on Ethanol-Induced Hypertension in Wistar Rat. Evidence-Based Complementary and Alternative Medicine, 2019: 2897867. doi: 10.1155/2019/2897867.
[184] Metchi D. M. F., Atsamo, A. D., Temdié Guemmogne, R. J., Ngouateu K. O. B., Dongmo, A. B. and Dimo, T. (2021). Antihypertensive effects of the Vitex cienkowskii (Verbenaceae) stem-bark extract on L-NAME-Induced hypertensive Rats. Evidence-Based Complementary and Alternative Medicine, 2021: 6668919. doi: 10.1155/2021/66689192021.
[185] Wansi S. L., Nyadjeu P., Ngamga D., Nguelefact M. E. P., Nguelefack T. B., Kamanyi A. (2007). Blood pressure lowering effect of the ethanol extract from the stem bark of Cinnamomum zeylanicum (Lauraceae) in rats. Pharmacologyonline, 3: 166-176.
[186] Nyadjeu, P., Nguelefack-Mbuyo, E. P., Atsamo, A. D., Nguelefack, T. B., Dongmo, A. B. and Kamanyi, A. (2013). Acute and chronic antihypertensive effects of Cinnamomum zeylanicum stem bark methanol extract in L-NAME-induced hypertensive rats. BMC complementary and alternative medicine, 13 (1): 1-10. doi: 10.1186/1472-6882-13-27.
[187] Nyadjeu, P., Dongmo, A., Nguelefack, T. B. and Kamanyi, A. (2011). Antihypertensive and vasorelaxant effects of Cinnamomum zeylanicum stem bark Extract in rats. Journal of Complementary and Integrative Medicine, 8 (1): 1-18. doi: 10.2202/1553-3840.1490.
[188] Ntchapda F., Barama J., Talla E. and Dimo T. (2017). Hypolipidemic, antioxidant and anti-atherosclerogenic effect of Extract leaves of Cassia occidentalis Linn (Caesalpiniaceae) in diet-induced hypercholesterolemic rats. BMC Complementary Medicine and Therapies, 17: 76. doi: 10.1186/s12906-017-1566-x.
[189] Leudeu, B. C. T., Tchiégang, C., Barbé, F., Nicolas, B. and Guéant, J. L. (2009). Ricinodendron heutelotii (Bail.) or Tetracarpidium conophorum Müll. oils fed to male rats lower blood lipids. Nutrition Research, 29 (7): 503-509. doi: 10.1016/j.nutres.2009.07.004.
[190] Mvongo, C., Mfopa, A., Kamgang, R. and Essame Oyono, J. L. (2016). Antidiabetic and antioxidant activities of Crinum jagus extracts on induced diabetes rats MACAPOS 1. International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 5: 86-95.
[191] Tchouanka, B. T., Abega, G. R. A., Zebaze, L. J. J. G. and Nkono, B. L. N. Y. (2022). Extracts and fractions of Gymnema sylvestre restore liver and kidney function by regulating tissue and serum transaminases in the type 2 diabetic rat. GSC Biological and Pharmaceutical Sciences, 20 (1): 314-325. doi: 10.30574/gscbps.2022.20.1.0302.
[192] Teugwa, C. M., Mejiato, P. C., Zofou, D., Tchinda, B. T. and Boyom, F. F. (2013). Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae). BMC complementary and alternative medicine 13 (1): 1-9. doi: 10.1186/1472-6882-13-175.
[193] Nyunaï N., Yaya A. J. G., Tabi N. T. G., Tchamgoue A. D., Ngondé M. C., Minka M. C. S. (2016). Anti-hyperglycemic and antioxidant potential of water-ethanol extract of Musanga cecropioides stem bark. International Journal of Pharmaceutical Sciences and Drug Research, 8 (1): 43-49.
[194] Tchamgoue, A. D., Tchokouaha, L. R., Tsabang, N., Tarkang, P. A., Kuiate, J. R. and Agbor, G. A. (2018). Costus afer protects cardio-, hepato- and reno-antioxidant status in streptozotocin-intoxicated wistar rats. BioMed Research International, 2: 4907648. doi: 10.1155/2018/4907648.
[195] Tchamgoue A., Dzeufiet P., Kuiata J. R., Agbor G. (2020). Costus afer modulates the activities of glycolytic and gluconeogenic enzymes in streptozotocin induced diabetic rats. Journal of drugs delivery and therapeutics, 10 (4s). doi: 10.22270/jddt.v10i4-s.4270.
[196] Noussi C., Ngueguim, F. T., Kamkumo G. R., Donfack G. C., Kandeda, A. K., Philippe D. J., Fifen R., Djomeni D. D. P., Ngouela S., Sewald N., Ndjakou L. B. and Dimo, T. (2020). Hydroethanolic extract from Bridelia atroviridis Müll. Arg. bark improves haematological and biochemical parameters in nicotinamide-/streptozotocin-induced diabetic rats. Evidence-Based Complementary and Alternative Medicine, 2020: 3160834. doi: 10.1155/2020/3160834.
[197] Tsafack, E. G., Mbiantcha, M., Ateufack, G., Djuichou Nguemnang, S. F., Nana Y. W., Atsamo, A. D., Mba V. M. M., Adjouzem C. F. and Ben B. E. (2021). Antihypernociceptive and Neuroprotective Effects of the Aqueous and Methanol Stem-Bark Extracts of Nauclea pobeguinii (Rubiaceae) on STZ-Induced Diabetic Neuropathic Pain. Evidence-Based Complementary and Alternative Medicine, 2021: 6637584. doi: 10.1155/2021/6637584.
[198] Takuissu, G. R., Fonkoua, M., Mandob, D., Ngoumen, D., Ambamba, D., Nanhah, J. and Judith, L. N. (2022). Subacute effects of hydroethanolic extracts of the pulp of Gambeya africana on glucose plasmatic levels and oxidative stress markers in diabetic rats. Metabolism Open, 14: 100192. doi: 10.1016/j.metop.2022.100192.
[199] Kowa, T. K., Nyunaï, N., Tchamgoue, A. D. and Nkoulou, T. G. (2018). Antihyperglycemic and anti-oxidant potential of ethanol extract of vitex thyrsiflora leaves on diabetic rats. Univ J Pharm Res, 3 (3): 19-25.
[200] Medjiofack D. F., Cusinato, F., Ragazzi, E. and Froldi, G. (2021). α-Glucosidase and advanced glycation end products inhibition with Vernonia amygdalina root and leaf extracts: New data supporting the antidiabetic properties. Journal of Pharmacy and Pharmacology, 73 (9): 1240-1249.
[201] Teugwa, C. M., Boudjeko, T., Tchinda, B. T., Mejiato, P. C. and Zofou, D. (2013). Anti-hyperglycaemic globulins from selected Cucurbitaceae seeds used as antidiabetic medicinal plants in Africa. BMC complementary and alternative medicine, 13 (1): 1-8. doi: 10.1186/1472-6882-13-63.
[202] Palla N. C. L, Etoundi O. C. B and Gouado I (2015). Antiamylase potential of telfairia occidentalis leaves from Cameroon and effect of their dietary supplementation on fasting blood glucose in Wistar Rats. Journal of Biosciences and Medicines 3 (9): 59681. doi: 10.4236/jbm.2015.39010.
[203] Sokeng, S. D., Rokeya, B., Mostafa, M., Nahar, N., Mosihuzzaman, M., Ali, L. and Kamtchouing, P. (2005). Antihyperglycemic effect of Bridelia ndellensis ethanol extract and fractions in streptozotocin-induced diabetic rats. African Journal of Traditional, Complementary and Alternative Medicines, 2 (2): 94-102.
[204] Fomekong, G. I., Momo, C. E. and Oben, J. E. (2008). Antihyperglycemic and hypoglycemic effects of aqueous and hydroethanolic extracts of Pentaclethra macrophylla Benth on Wistar rats. Medicinal and Aromatic Plant Science and Biotechnology, 2 (1): 31-34.
[205] Maidadi, B., Ntchapda, F., Miaffo, D. and Kamgue Guessom, O. (2022). Efficacy of Rytigynia senegalensis blume on free radical scavenging, inhibition of α-amylase and α-glucosidase activity and blood glucose level. Evidence-Based Complementary and Alternative Medicine, 2022: 9519743. doi: 10.1155/2022/9519743.
[206] Dimo, T., Ngueguim, F. T., Kamtchouing, P., Dongo, E. and Tan, P. V. (2006). Glucose lowering efficacy of the aqueous stem bark extract of Trema orientalis (Linn) Blume in normal and streptozotocin diabetic rats. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 61 (3): 233-236.
[207] Ndjenda II M. K., Nguelefack-Mbuyo, E. P., Atsamo, A. D., Fofie, C. K., Fodem, C., Nguemo, F. and Nguelefack, T. B. (2021). Antihypertensive Effects of the methanol extract and the ethyl acetate fraction from Crinum zeylanicum (Amaryllidaceae) leaves in L-NAME-Treated Rat. Evidence-Based Complementary and Alternative Medicine, (2021). doi: 10.1155/2021/2656249.
[208] Nguelefack, T. B., Fodem, C., Nguelefack-Mbuyo, E. P., Nyadjeu, P., Wansi, S. L., Watcho, P. and Kamanyi, A. (2015). "Endothelium nitric oxide-independent vasorelaxant effects of the Extract from Stephania abyssinica on the isolated rat thoracic aorta" Journal of Complementary and Integrative Medicine, 12 (1): 15-21. doi: 10.1515/jcim-2014-0022.
[209] Fodem, C., Nguelefack-Mbuyo, E. P., Ndjenda II, M. K., Kamanyi, A. and Nguelefack, T. B. (2021). Vasorelaxant-mediated antihypertensive effect of the leaf Extract from Stephania abyssinica (Dillon and A. Rich) Walp (Menispermaceae) in Rat. BioMed Research International, 4730341. doi: 10.1155/2021/4730341.
[210] Ntchapda, F., Bonabe, C., Kemeta Azambou, D. R., Talla, E. and Dimo, T. (2016). Diuretic and antioxidant activities of the Extract of leaves of Vepris heterophylla (Engl.) R. Let (Rutaceae) in rats. BMC complementary and alternative medicine, 16 (1): 1-10. doi: 10.1186/s12906-016-1439-8.
[211] Nguelefack, T. B., Mekhfi, H., Dongmo, A. B., Dimo, T., Watcho, P., Zoheir, J., Legssyer A, Kamanyi A. and Ziyyat, A. (2009). Hypertensive effects of oral administration of the Extract of Solanum torvum fruits in L-NAME treated rats: Evidence from In vivo and In vitro studies. Journal of Ethnopharmacology, 124 (3): 592-599. doi: 10.1016/j.jep.2009.04.057.
[212] Nguelefack, T. B., Mekhfi, H., Dimo, T., Afkir, S., Nguelefack-Mbuyo, E. P., Legssyer, A. and Ziyyat, A. (2008). Cardiovascular and anti-platelet aggregation activities of extracts from Solanum torvum (Solanaceae) fruits in Rat. Journal of Complementary and Integrative Medicine, 5 (1). doi: 10.2202/1553-3840.1105.
[213] Bopda, M. O. S., Dimo, T., Nguelefack, T. B., Dzeufiet, D. D., Rakotonirina, S. V. and Kamtchouing, P. (2007). Effects of Brillantaisia nitens Lindau (Acanthaceae) methylene chloride/methanol leaf extract on rat arterial blood pressure and heart rate. Pharmacologyonline, 1: 495-510.
[214] Bopda O. S. M., Dimo T., Tonkep I. S., Zapfack L., Djomeni D. Z., Kamtchouing P. (2011). Cardiodepression as a possible mechanism of the hypotensive effects of the methylene chloride/methanol leaf extract of Brillantaisia nitens Lindau (Acanthaceae) in rats. African Journal of Biotechnology, 10 (72): 16393-16401. doi: 10.5897/AJB11.2061.
[215] Tom E. N. L., Bopda, O. S. M., Monju, M. P., Bekono, Y. F., Mimb, J. R. B., Bilanda, D. C. and Dimo, T. (2021). Kalanchoe pinnata extract possesses vasorelaxant activities contributing to its antihypertensive effects in a model of rat-induced hypertension and myocardial infarction. The Journal of Phytopharmacology, 10 (5): 366-373. doi: 10.31254/phyto.2021.10515.
[216] Dimo, T., Azebaze, A. G. B., Kamgang, R., Rakotonirina, S. and Nkengfack, A. E. (2003). Vasodilator effect of the methylene chloride/methanol extract of Erythrina indica Linn (Leguminosae). Journal of the Cameroon Academy of Sciences, 3 (3): 207-212.
[217] Tsague M. V., Fokunang N. C., Talla E., Djekilamber A., Tembe-Fokunang E. A., Ngo Lemba T. E., Essomba C., Ntchapda F., Sokeng D. S., Oben J. E., Ze M. J., Afane E. A., Temdie G. R. J., Dimo T., Chi F. G., Ngadjui T. B. (2016). Identification of the bioactive compounds hypotensive effect in the ethyl acetate extract of Eribroma oblongum (Malvaceae) stem bark. Journal of Diseases and Medicinal Plants 2 (6): 74-82. doi: 10.11648/j.jdmp.20160206.13.
[218] Dongmo, A., Kamanyi, M. A., Tan, P. V., Bopelet, M., Vierling, W. and Wagner, H. (2004). Vasodilating properties of the stem bark extract of Mitragyna ciliata in rats and guinea pigs. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 18 (1): 36-39. doi: 10.1002/ptr.1350.
[219] Tiwo T. C., Womeni H. M., Ndomou H. S., Tchoumbougnang F., Momo F., Linder M. and Nayak B. (2018). Effects of boiled fish (Silurus glanis, Heterotis niloticus, Cyprinus carpio and Oreochromis niloticus) ingestion on the growth of young male and female Wistar albino rats. Journal of Nutrition and Food Sciences, 8 (652): 1000652. doi: 10.4172/2155-9600.1000652.
[220] Manz koule J. C., Ndomou M., Njinkoue J. M., Tchoumbougnang F., Milong M. C. S., Djimbie D. J., Soh O. A. V., Nchoutpouen M. N., Foumedzo R. and Gouado I. (2020). Antihyperlipidemic potential of oil extracted from Ilisha africana on rats. Scientific African, 8: e00322. doi: 10.1016/j.sciaf.2020.e00322.
[221] Nchoutpouen M. N., Ndomou M., Manz K. J. C., Milong C. S. M., Dama R. A., Ndombol N. R. P., Nsoga J. V. F., Ngo T. C., Youogo M. T., Peyieno M., Ngock E. and Tchoumbougnang F. (2020). Hypolipidemic effects of oil extracted from Ethmalosa fimbriata on dislipidemic female rats. Int. J. Biol. Chem. Sci. 14 (6): 2193-2203.
[222] Njiké N. F. H., Fowa A. B., Teboukeu G. B., Mouokeu, R. S. and Womeni, H. M. (2021). Effectiveness of boiled Chrysicthys nigrodigitatus against rats-induced Salmonella Typhi infection. Clinical Nutrition Open Science, 37: 25-34. doi: 10.1016/j.nutos.2021.04.001.
[223] Kuate, D., Etoundi, B. C., Azantsa, B. K., Kengne, A. P. N., Ngondi, J. L. and Oben, J. E. (2010). The use of LeptiCore® in reducing fat gain and managing weight loss in patients with metabolic syndrome. Lipids in Health and Disease, 9 (1): 1-7. doi: 10.1186/1476-511X-9-20.
[224] Tiencheu, B., Achidi, A. U., Flore, T. N. E., Tenyang, N., Lyonga, A. N. M. and Romelle, F. D. (2021). Oils of Rhynchophorusphoenicis Larva and Brachytrupesmembranaceus: Chemical properties, fatty acid composition and its effects on serum lipid profile of Wistar albino rats. International Journal of Innovative Research in Science, Engineering and Technology, 10 (4): 329-340. doi: 10.15680/IJIRSET.2021.1004004.
[225] Mfopa A., Mediesse F. K., Mvongo C., Nkoubatchoundjwen S., Lum A. A., Sobngwi E., ´ Kamgang R. and Boudjeko T. (2021). Antidyslipidemic potential of water-soluble polysaccharides of Ganoderma applanatum in MACAPOS-2-Induced obese rats. Evidence-Based Complementary and Alternative Medicine, 2021: 2452057. doi: 10.1155/2021/2452057.
[226] Etoundi O. C. B., Kayo T. C. V., Mbang M. A. J. and Piéme C. A. (2019). Study of acute toxicity and the effect of the Extract of a formulation of three edibles mushrooms on oxidative stress induced in rats. World Journal of Food Science and Technology, 3 (1): 6-13. doi: 10.11648/j.wjfst.20190301.12.
[227] Etoundi O. C. B., Mbang M. A. J., Tuem S. and Gouado, I. (2017). Study of toxicity and antidiabetic activity of ethanolic and hydroethanolic extracts of Pleurotus pulmonarius and the Extract of Pleurotus floridanus. Journal of Food, Nutrition and Population Health, 1 (20).
[228] Etoundi, O. C. B., Kayo, V., Deudje, O. N., Djamen, B. M., Nangmou, M. N. and Azebaze, B. G. A. (2020). The influence of solvent nature on the extraction yield of Pleurotus pulmonarius, Pleurotus floridanus and Pleurotus sajor-caju and study of the effects of extract mixtures on oxidative stress. Nutrafoods, doi: 10.17470/NF-020-0027.
[229] Mbang M. A. J., Etoundi O. C. B., Djessissem R. and Kana, S. M. M. (2020). Evaluation of the activity of alpha amylase and antioxidant potential formulations of three varieties of oyster mushrooms: Pulmonarius, floridanus and sajor-caju. Journal of the Cameroon Academy of Sciences, 15 (3): 151-162. doi: 10.4314/jcas.v15i3.1.
[230] Mbang M. A. J., Kana S. M. M., Etaga N. B., Fandio M. K. and Etoundi O. C. B. (2021). Evaluation of toxicity, antihyperglycemic and hypoglycemic activities of mixtures of extracts of 3 varieties of Oyster mushrooms. Food Science and Nutrition Research, 4 (2): 1-8.
[231] Kanjo W. R., Njouonkou A. L., Yongabi A. K., Manfo T. F. P., Tume C., Nantia A. E. (2022). In vitro screening of the anti-diabetic activity of six species of edible termite associated mushrooms (Termitomyces spp.) from the Western Highlands of Cameroon. Current Research in Environmental and Applied Mycology (Journal of Fungal Biology), 12 (1): 125–135. doi: 10.5943/cream/12/1/10.
[232] Bobga, P. T., Fossi, B. T., Taiwe, G. S., Nkanpira, K. T., Yolande, N. E., Ngwa, F. A., Toukam T. L. L., Yuwong W. B. and Ndip, L. M. (2022). Evaluation of the anti-diabetic potential of probiotic Lactobacillus fermentum (PRI 29) Isolated from Cameroonian fermented cow milk in alloxan induced diabetes type-1 mice model. Saudi Journal of Pathology and Microbiology, 7 (10): 381-393. doi: 10.36348/sjpm.2022.v07i10.001.
[233] Bemmo, U. L. K., Kenfack, C. H. M., Bindzi, J. M., Barry, R. B. and Ngoufack, F. Z. (2021). Viability and In vivo hypocholesterolemic effect of Lactobacillus plantarum 29V in local honey. Journal of Advances in Biology and Biotechnology, 24 (2): 24-33. doi: 10.9734/JABB/2021/v24i230199.
[234] Zambou N. F., Kaktcham P. M., Fonteh A. F., Guetiya W. R. and Sieladie D. V. (2013). Effects of inclusion of two probiotic strains isolated from “Sha’a”, a maize-based traditionally fermented beverage on lipid metabolism of rabbits fed a cholesterol-enriched diet. International Journal of Animal and Veterinary Advances, 5 (2): 87-97.
Cite This Article
  • APA Style

    Fabrice Fabien Dongho Dongmo, Diana Ngo Hagbe, Guileine Linda Dongho Zongning, Suzie Vanissa Nkepndep Touohou, William Djeukeu Asongni, et al. (2023). An Overview of Metabolic Syndrome and Cameroonian Natural Agents Use in the Management of Associated Factors. Journal of Diseases and Medicinal Plants, 9(4), 100-128. https://doi.org/10.11648/j.jdmp.20230904.11

    Copy | Download

    ACS Style

    Fabrice Fabien Dongho Dongmo; Diana Ngo Hagbe; Guileine Linda Dongho Zongning; Suzie Vanissa Nkepndep Touohou; William Djeukeu Asongni, et al. An Overview of Metabolic Syndrome and Cameroonian Natural Agents Use in the Management of Associated Factors. J. Dis. Med. Plants 2023, 9(4), 100-128. doi: 10.11648/j.jdmp.20230904.11

    Copy | Download

    AMA Style

    Fabrice Fabien Dongho Dongmo, Diana Ngo Hagbe, Guileine Linda Dongho Zongning, Suzie Vanissa Nkepndep Touohou, William Djeukeu Asongni, et al. An Overview of Metabolic Syndrome and Cameroonian Natural Agents Use in the Management of Associated Factors. J Dis Med Plants. 2023;9(4):100-128. doi: 10.11648/j.jdmp.20230904.11

    Copy | Download

  • @article{10.11648/j.jdmp.20230904.11,
      author = {Fabrice Fabien Dongho Dongmo and Diana Ngo Hagbe and Guileine Linda Dongho Zongning and Suzie Vanissa Nkepndep Touohou and William Djeukeu Asongni and Ghislain Maffo Tazoho and Landry Lienou Lienou and Aymar Rodrigue Fogang Mba and Nicolas Policarpe Nolla and Rebecca Madeleine Ebelle Etame and Rosalie Anne Ngono Ngane and Inocent Gouado},
      title = {An Overview of Metabolic Syndrome and Cameroonian Natural Agents Use in the Management of Associated Factors},
      journal = {Journal of Diseases and Medicinal Plants},
      volume = {9},
      number = {4},
      pages = {100-128},
      doi = {10.11648/j.jdmp.20230904.11},
      url = {https://doi.org/10.11648/j.jdmp.20230904.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jdmp.20230904.11},
      abstract = {Metabolic syndrome (MetS) is a group of metabolic disorders that include central obesity, hyperglycaemia, dyslipidemia, hypertension and having an increasing risk of developing cardiovascular diseases. Cameroon, is encounting a significant increase in the prevalence and associated factors in recent decades. In fact, the existing literature showed the prevalence of MetS in Cameroon from 7.0 to 41.1% according to the area and period of study and to the concerned specific groups. It is the same for the associated factors with a prevalence of 8.0 to 69.1% for obesity and overweight; 3.4 to 75.4% for dyslipidaemia; 4.8 to 20.5% for diabetes; and 4.1 to 46.5% for hypertension. For the management of MetS and associated factors, natural substances are complementary or alternative choices regarding the limited side effects of common chemical therapeutics. Cameroonian biodiversity offers a wide variety of natural substances. The present review briefly overviews the MetS and identifies from literature, natural agents useful in the management of MetS and associated factors in Cameroon. Ethnomedicine and ethnobotany studies revealed plant resources of which 18 species are used for at least three associated factors, 195 for one or two factors. Studies done on biological properties revealed five resources, plants being the most represented of which 63 active on at least three factors and 66 on one or two factors. The other resources represented by mushrooms (11 species), marine products (08 species of fishes and 01 species of algae), insects (02 species) and probiotics (02 species) were active on at least two factors. A total of 312 species of which 288 plants are identified useful for management of MetS and associated factors in Cameroon.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - An Overview of Metabolic Syndrome and Cameroonian Natural Agents Use in the Management of Associated Factors
    AU  - Fabrice Fabien Dongho Dongmo
    AU  - Diana Ngo Hagbe
    AU  - Guileine Linda Dongho Zongning
    AU  - Suzie Vanissa Nkepndep Touohou
    AU  - William Djeukeu Asongni
    AU  - Ghislain Maffo Tazoho
    AU  - Landry Lienou Lienou
    AU  - Aymar Rodrigue Fogang Mba
    AU  - Nicolas Policarpe Nolla
    AU  - Rebecca Madeleine Ebelle Etame
    AU  - Rosalie Anne Ngono Ngane
    AU  - Inocent Gouado
    Y1  - 2023/10/08
    PY  - 2023
    N1  - https://doi.org/10.11648/j.jdmp.20230904.11
    DO  - 10.11648/j.jdmp.20230904.11
    T2  - Journal of Diseases and Medicinal Plants
    JF  - Journal of Diseases and Medicinal Plants
    JO  - Journal of Diseases and Medicinal Plants
    SP  - 100
    EP  - 128
    PB  - Science Publishing Group
    SN  - 2469-8210
    UR  - https://doi.org/10.11648/j.jdmp.20230904.11
    AB  - Metabolic syndrome (MetS) is a group of metabolic disorders that include central obesity, hyperglycaemia, dyslipidemia, hypertension and having an increasing risk of developing cardiovascular diseases. Cameroon, is encounting a significant increase in the prevalence and associated factors in recent decades. In fact, the existing literature showed the prevalence of MetS in Cameroon from 7.0 to 41.1% according to the area and period of study and to the concerned specific groups. It is the same for the associated factors with a prevalence of 8.0 to 69.1% for obesity and overweight; 3.4 to 75.4% for dyslipidaemia; 4.8 to 20.5% for diabetes; and 4.1 to 46.5% for hypertension. For the management of MetS and associated factors, natural substances are complementary or alternative choices regarding the limited side effects of common chemical therapeutics. Cameroonian biodiversity offers a wide variety of natural substances. The present review briefly overviews the MetS and identifies from literature, natural agents useful in the management of MetS and associated factors in Cameroon. Ethnomedicine and ethnobotany studies revealed plant resources of which 18 species are used for at least three associated factors, 195 for one or two factors. Studies done on biological properties revealed five resources, plants being the most represented of which 63 active on at least three factors and 66 on one or two factors. The other resources represented by mushrooms (11 species), marine products (08 species of fishes and 01 species of algae), insects (02 species) and probiotics (02 species) were active on at least two factors. A total of 312 species of which 288 plants are identified useful for management of MetS and associated factors in Cameroon.
    VL  - 9
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Home Economic, Advanced Teacher’s Training College for Technical Education, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon

  • Sections