In the present paper, we deal with two different existence results of solutions for a nonlocal elliptic Dirichlet boundary value problem involving p(x)-Laplacian. The first one is based on the Brouwer fixed point theorem and the Galerkin method which gives a priori estimate of a nontrivial weak soltion. The second one is based on the variational methods. By using Mountain-Pass theorem, we obtain at least one nontrivial weak soltion.
Published in | Pure and Applied Mathematics Journal (Volume 2, Issue 1) |
DOI | 10.11648/j.pamj.20130201.13 |
Page(s) | 20-27 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
p(x)-Laplacian; Nonlocal Problem; Fixed Point Theorem; Galerkin Method; Variational Methods Moun-tain-Pass Theorem
[1] | S. N. Antontsev, J. F. Rodrigues, "On stationary ther-mo-rheological viscous flows", Ann. Univ. Ferrara, Sez. 7, Sci. Mat., vol.52, pp. 19-36, 2006. |
[2] | M. Avci , B. Cekic, R. A. Mashiyev , "Existence and multip-licity of the solutions of the p(x)-Kirchhoff type equation via genus theory", Math. Methods in the Applied Sciences, vol. 34 (14) , pp.1751-1759, 2011. |
[3] | B. Cekic, A. V. Kalinin, R. A. Mashiyev, M. Avci, "L^{p(x)}(Ω)-estimates of vector fields and some applica-tions to magnetostatics problems", Journal of Math. Analysis and Appl., vol. 389 (2), pp. 838-851, 2012. |
[4] | F. J. S. A. Corrêa, G. M. Figueiredo, "On a elliptic equation of p-kirchhoff type via variational methods", Bull. Austral. Math. Soc., vol. 74, pp.263-277, 2006. |
[5] | G. Dai, D. Liu, "Infinitely many positive solutions for a p(x)-Kirchhoff-type equation", J. Math. Anal. Appl., vol.359 (2), pp.704-710, 2009. |
[6] | G. Dai, R. Hao, "Existence of solutions for a p(x)-Kirchhoff-type equation", J. Math. Anal. Appl., vol. 359 (2), pp. 275-284, 2009. |
[7] | X. L. Fan., "On nonlocal p(x)-Laplacian Dirichlet problems", Nonlinear Anal. vol.72, pp. 3314-3323, 2010. |
[8] | X. L. Fan, D. Zhao, "On the spaces L^{p(x)}and W^{m,p(x)}", J. Math. Anal. Appl., vol. 263, pp. 424-446, 2001. |
[9] | X. Fan, Q. H. Zhang, "Existence of solutions for p(x)-Laplacian Dirichlet problems", Nonlinear Anal., vol. 52, pp. 1843-1852, 2003. |
[10] | P. A. Hästö, "On the variable exponent Dirichlet energy integral", Comm. Pure Appl. Anal., vol. 5 (3), pp. 413-420, 2006. |
[11] | X. He, W. Zou, "Infinitely many positive solutions for Kir-chhoff-type problems", Nonlinear Anal. vol. 70, pp. 1407-1414, 2009. |
[12] | S. Kesavan, Topics in Functional Analysis and Applications, Wiley, NewYork, 1989. |
[13] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[14] | O. Kovăčik, J. Răkosnik, "On spaces L^{p(x)} and W^{1,p(x)}", Czechoslovak Math. J. vol. 41 (116), pp. 592-618, 1991. |
[15] | T. F. Ma, "Remarks on an elliptic equation of Kirchhoff type", Nonlinear Anal., vol. 63, pp. 1967-1977, 2005. |
[16] | H. Ma, G. Dai, "Existence results for a variable exponent elliptic problem via topological method", Boundary Value Problems, vol. 2012:99. doi:10.1186/1687-2770-2012-99. |
[17] | M. Mihăilescu, V. Rădulescu, "On a nonhomogeneous qua-silinear eigenvalue problem in Sobolev spaces with variable exponent", Proceedings Amer. Math. Soc., vol. 135 (9), pp. 2929-2937, 2007. |
[18] | S. Ogras, R. A. Mashiyev, M. Avci, Z. Yucedag, "Existence of Solutions for a Class of Elliptic Systems in ℝⁿ Involning (p(x),q(x))-Laplacian", Journal of Inequalities and Applica-tions, ID612938, pp.20, 2008. |
[19] | M. Růžička, Electrorheological fluids: Modeling and Ma-thematical Theory, Lecture Notes in Mathematics, Sprin-ger-Verlag: Berlin, 2000. |
[20] | M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. |
[21] | F. Wang, Y. An, "Existence of Nontrivial Solution for a Nonlocal Elliptic Equation with Nonlinear Boundary Condi-tion", Boundary Value Problems Vol. 2009, Article ID 540360, 8 pages, doi:10.1155/2009/540360. |
[22] | V.V. Zhikov, "Averaging of functionals of the calculus of variations and elasticity theory", Math. USSR. Izv., vol. 9, pp. 33-66, 1987 |
APA Style
Mustafa Avci. (2013). Existence Results for A Nonlocal Problem Involving the p(x)-Laplacian. Pure and Applied Mathematics Journal, 2(1), 20-27. https://doi.org/10.11648/j.pamj.20130201.13
ACS Style
Mustafa Avci. Existence Results for A Nonlocal Problem Involving the p(x)-Laplacian. Pure Appl. Math. J. 2013, 2(1), 20-27. doi: 10.11648/j.pamj.20130201.13
AMA Style
Mustafa Avci. Existence Results for A Nonlocal Problem Involving the p(x)-Laplacian. Pure Appl Math J. 2013;2(1):20-27. doi: 10.11648/j.pamj.20130201.13
@article{10.11648/j.pamj.20130201.13, author = {Mustafa Avci}, title = {Existence Results for A Nonlocal Problem Involving the p(x)-Laplacian}, journal = {Pure and Applied Mathematics Journal}, volume = {2}, number = {1}, pages = {20-27}, doi = {10.11648/j.pamj.20130201.13}, url = {https://doi.org/10.11648/j.pamj.20130201.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20130201.13}, abstract = {In the present paper, we deal with two different existence results of solutions for a nonlocal elliptic Dirichlet boundary value problem involving p(x)-Laplacian. The first one is based on the Brouwer fixed point theorem and the Galerkin method which gives a priori estimate of a nontrivial weak soltion. The second one is based on the variational methods. By using Mountain-Pass theorem, we obtain at least one nontrivial weak soltion.}, year = {2013} }
TY - JOUR T1 - Existence Results for A Nonlocal Problem Involving the p(x)-Laplacian AU - Mustafa Avci Y1 - 2013/02/20 PY - 2013 N1 - https://doi.org/10.11648/j.pamj.20130201.13 DO - 10.11648/j.pamj.20130201.13 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 20 EP - 27 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20130201.13 AB - In the present paper, we deal with two different existence results of solutions for a nonlocal elliptic Dirichlet boundary value problem involving p(x)-Laplacian. The first one is based on the Brouwer fixed point theorem and the Galerkin method which gives a priori estimate of a nontrivial weak soltion. The second one is based on the variational methods. By using Mountain-Pass theorem, we obtain at least one nontrivial weak soltion. VL - 2 IS - 1 ER -