The rising global demand for healthy, convenient, and ready-to-eat foods has increased the popularity of snack bars, valued for their energy density and portability. This study aimed to develop nutritious snack bars for children using locally available ingredients: oats, faba beans, sunflower seeds, and flax seeds. A mixture design supported by Minitab v.18 generated 17 formulations with varying ingredient ratios. Rosemary leaf extract was added to enhance antioxidant properties, and jaggery was used as a natural sweetener. Proximate analysis showed moisture content of 6-8%, ash 1.12-2.57%, fiber 2-3.5%, fat 5-7%, protein 20-24%, and carbohydrates 58-62%, yielding an energy value of 393-400 Kcal/100g. Mineral content included sodium (5-7 mg), potassium (364-440 mg), calcium (4-8 mg), and magnesium (118-121 mg), with micro-minerals copper (0.4-1.67 mg), iron (6-9.25 mg), and zinc (4-7.5 mg) per 100g. The optimal formulation, with a composite desirability of 0.940494, comprised 48.18g oats, 39.80g faba beans, 4g sunflower seeds, and 8.01g flax seeds. Sensory evaluation confirmed its high acceptability, and microbial analysis verified product safety for up to 30 days of storage.
Published in | Science Frontiers (Volume 6, Issue 3) |
DOI | 10.11648/j.sf.20250603.11 |
Page(s) | 34-56 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Food Products Malnutrition, Natural Sweetener, Proximate Analysis, Snack Bar
Components of the Design | Type | Range of Levels | |
---|---|---|---|
Low | High | ||
Oat (g) | Randomized | 40 | 50 |
Faba bean (g) | Randomized | 30 | 40 |
Sun flower (g) | Randomized | 4 | 10 |
Flex-seed (g) | Randomized | 4 | 10 |
Run Order | Oats | Faba bean | Sun flower seeds | Jaggery | Rosemary leaf extract |
---|---|---|---|---|---|
1 | 46 | 40 | 10 | 30 | 1 |
2 | 50 | 36 | 10 | 30 | 1 |
3 | 46 | 40 | 4 | 30 | 1 |
4 | 40 | 40 | 10 | 30 | 1 |
5 | 47.75 | 37.75 | 7.25 | 30 | 1 |
6 | 48.875 | 33.875 | 8.625 | 30 | 1 |
7 | 50 | 40 | 4 | 30 | 1 |
8 | 50 | 36 | 4 | 30 | 1 |
9 | 48.875 | 38.875 | 6.625 | 30 | 1 |
10 | 46.875 | 38.875 | 5.625 | 30 | 1 |
11 | 48.875 | 36.875 | 8.625 | 30 | 1 |
12 | 50 | 30 | 10 | 30 | 1 |
13 | 48.875 | 38.875 | 5.625 | 30 | 1 |
14 | 46.875 | 38.875 | 8.625 | 30 | 1 |
15 | 48.875 | 36.875 | 5.625 | 30 | 1 |
16 | 50 | 40 | 6 | 30 | 1 |
17 | 43.875 | 38.875 | 8.625 | 30 | 1 |
[40-50] | [30-40] | [4-10] | [30gm] | [1] |
Component | % Moisture | % Ash | % Fat | % Fiber | % Protein | % CHO | Energy (kcal/100 g) |
---|---|---|---|---|---|---|---|
Oats | 4.20±0.50c | 2.80±0.04b | 5.33±0.27c | 8.72±0.25b | 13.19±0.4d | 65.76±0.28b | 398.65±0.74c |
Faba beans | 6.90±0.09b | 2.99±0.2b | 3.30±0.08d | 1.66±0.02c | 39.72±0.06a | 45.4±0.90c | 397.9±2.20c |
Sun flower seeds | 10.70±0.06a | 4.01±0.03a | 10.87±0.06b | 11.16±0.2a | 26.7±0.3c | 40.55±0.79d | 411.47±0.36b |
Flax seeds | 6.30±0.07b | 2.14±0.04c | 16.02±0.8a | 8.20±0.7b | 22.17±0.4b | 45.17±0.90c | 446.16±0.47a |
Jaggery | 3.88±0.10d | 0.56±0.01d | 0.12±0.01e | 0.00±0.00d | 0.32±0.03e | 95.12±0.09a | 382.86±0.38d |
S.code | % Moisture | % Ash | % Fiber | % Fat | % Protein | % Carbohydrates | Energy (kcal/100 g) |
---|---|---|---|---|---|---|---|
R1 | 7.63±0.76a | 1.17±0.15e | 2.99±0.17c | 5.65±0.28bcdef | 24.19±0.35a | 58.38±0.37cd | 393.05±2.51abcd |
R2 | 7.33±0.45a | 1.12±0.13e | 3.02±0.09b | 6.57±0.28ab | 22.14±0.33bcd | 59.83±0.35cd | 399.07±2.65abc |
R3 | 8.04±1.44a | 2.37±0.07b | 3.32±0.24ab | 5.09±0.03f | 22.99±0.53ab | 58.23±1.7d | 383.79±5.35d |
R4 | 7.15±0.40a | 1.46±0.07de | 3.31±0.11ab | 7.00±0.31a | 22.83±0.57ab | 58.24±0.48d | 400.58±1.25ab |
R5 | 6.81±0.13a | 1.32±0.27e | 3.33±0.07ab | 6.57±0.19ab | 21.65±0.46bcde | 60.32±0.77abcd | 400.3±0.93ab |
R6 | 6.85±0.17a | 1.32±0.25e | 3.42±0.12ab | 6.88±0.04a | 20.59±0.4de | 60.9±0.73abc | 401.73±1.69a |
R7 | 6.61±0.14a | 1.16±0.13e | 3.20±0.07ab | 5.37±0.12def | 21.00±1.03cde | 62.66±1.14a | 395.80±1.24abc |
R8 | 6.29±0.05a | 1.67±1.07cd | 3.51±0.31a | 5.62±0.24bcdef | 20.42±0.28e | 62.49±1.20ab | 396.29±4.93abc |
R9 | 6.45±0.31a | 2.36±0.11b | 3.32±0.16ab | 5.54±0.44cdef | 22.38±0.43bc | 59.95±0.07bcd | 392.43±2.46bcd |
R10 | 6.45±0.57a | 1.87±0.48c | 3.44±0.18ab | 5.33±0.12def | 23.10±0.54ab | 59.81±0.99cd | 393.37±3.52abc |
R11 | 6.80±0.30a | 1.43±0.68de | 3.34±0.26ab | 6.09±0.34abcde | 22.17±0.99bcd | 60.16±0.35abcd | 397.52±2.19abc |
R12 | 6.66±0.34a | 1.68±0.45cd | 3.42±0.17ab | 6.65±0.53a | 21.70±0.32bcde | 59.88±0.39cd | 399.89±4.73abc |
R13 | 7.22±0.38a | 1.37±0.06de | 3.19±0.12ab | 6.11±0.58abcde | 22.02±0.56bcde | 60.08±0.53bcd | 396.19±4.34abc |
R14 | 7.29±0.15a | 1.59±0.59d | 3.13±0.07ab | 5.28±0.21ef | 23.24±0.38ab | 59.48±0.97cd | 390.88±0.87cd |
R15 | 7.72±0.11a | 3.48±0.08a | 3.48±0.08ab | 6.47±0.23abc | 22.24±0.5bcd | 58.06±0.83d | 393.37±2.86abc |
R16 | 7.32±0.25a | 3.09±0.09ab | 3.09±0.09ab | 5.48±0.59cdef | 22.49±0.3bc | 60.49±0.92abcd | 393.53±3.19abc |
R17 | 6.96±0.07a | 3.25±0.16a | 3.25±0.16ab | 6.32±0.24abcd | 23.12±0.6ab | 58.81±0.97cd | 397.59±1.14abc |
S.Code | Fe | Mg | Ca | K | Na | Cu | Zn |
---|---|---|---|---|---|---|---|
Raw materials: | |||||||
Oat | 11.51±364a | 116.6±308c | 50.4±0.03c | 412.52±0.85b | 6.73±0.55c | 0.92±0.48b | 2.94±0.13c |
Faba Bean | 2.8±0.02abc | 149.7±0.111a | 78.32±0.98b | 446.81±0.85a | 6.47±0.85c | 0.30±0.85e | 2.72±0.85c |
Sunflower seed | 5.5±0.01c | 117.9±0.12c | 43.82±0.33d | 239.6±.09c | 16.28±0. 80a | 1.81±0. 775a | 3.78±0.12a |
Flax Seed | 4.16±0.82ab | 131.3±0. 583b | 142.16±0.01a | 177.7±0.78d | 12.41±0. 61b | 1.12±0. 68ab | 3.22±0.36b |
Jaggery | 9.24±0.02b | 7.88±0.02d | 52.46±0.05abc | 0.48±0.02e | 0.48±0.02e | 0.41±0.01f | 0.33±0.02d |
Formulated snack bars | |||||||
R1 | 7.78±0.72de | 119.88±1.85abc | 5.31±0.21ab | 440.6±2.9cde | 5.5±0.32defg | 0.49±0.06cde | 4.71±0.12de |
R2 | 7.93±0.15cd | 120.86±0.3 ac | 7.21±0.08a | 402.18±1.0ab | 4.29±0.05i | 1.14±0.09a | 5.03±0.12a |
R3 | 6.29±0.25f | 121.28±0.41a | 5.75±0.07ab | 390.56±0.9cd | 7.72±0.10b | 0.66±0.04c | 5.18±0.06a |
R4 | 7.5±0.3de | 121.09±1.44a | 5.60±0.1ab | 401.09±1.2a | 7.75±0.10a | 0.5±0.06cde | 5.12±0.11a |
R5 | 7.57±0.26de | 120.82±0.3ac | 5.62±0.12ab | 381.57±1.3cd | 4.46±0.07i | 0.49±0.06ce | 6.22±0.09a |
R6 | 7.9±0.12cde | 121.16±0.11a | 7.45±0.15a | 406.81±1.5a | 7.61±0.08a | 1.14±0.09a | 7.7±0.06cde |
R7 | 8.27±0.12cd | 118.18±0.17c | 7.87±0.03a | 391.92±2.7cd | 5.25±0.1fgh | 0.64±0.07cd | 7.7±0.06cde |
R8 | 8.36±0.04cd | 120.8±0.24a | 8.1±0.09de | 381.84±2.3cd | 5.92±0.08c | 1.18±0.06a | 4.36±0.09de |
R9 | 8.4±0.26cd | 120.8±0.196a | 5.43±0.05ab | 421.24±1.4a | 5.5±0.1defg | 0.4±0.04cde | 5.55±0.32a |
R10 | 8.99±1.19bc | 119.9±0.35abc | 5.43±0.05ab | 398.5±0.63cd | 5.7±0.06cd | 0.43±0.00e | 5.33±0.06a |
R11 | 10.6±0.05a | 120.29±0.17a | 4.83±0.06de | 364.32±1.0cd | 5.64±0.1ce | 0.43±0.00e | 3.65±0.14de |
R12 | 8.2±0.30cde | 121.01±0.17ab | 8.03±0.08bcd | 408.53±1.2ab | 5.8±0.08cd | 1.29±0.05a | 5.16±0.1a |
R13 | 8.5±0.22bcd | 119.88±1.85abc | 4.58±0.07de | 396.8±0.42be | 5.6±0.08cef | 0.41±0.04de | 7.3±0.13cde |
R14 | 8.29±0.03cd | 121.13±0.24ab | 6.64±0.19bcd | 399.2±2.18de | 5.13±0.07h | 0.43±0.00e | 5.72±0.09a |
R15 | 7.05±0.08ef | 120.56±0.43a | 5.43±0.05ab | 408.89±0.8ac | 5.2±0.05gh | 0.89±0.16b | 6.76±0.08a |
R16 | 8.31±0.05cd | 119.61±0.36abc | 7.799±0.07a | 396.55±0.6ad | 5.06±0.05h | 0.49±0.06ce | 7.22±0.21ce |
R17 | 9.62±0.19ab | 120.48±0.39a | 7.38±0.07a | 400.0±1.09aa | 5.4±0.07efh | 0.5±0.06ce | 7.17±0.21ce |
Parameter | Amount |
---|---|
TPC | 135.83±3.38 mg GAC/g |
TFC | 31.52±0.28 mg que/g |
% IC50 | 1.36 mg/Ml |
Proximate compositions | |||||||
---|---|---|---|---|---|---|---|
Source | Ash | Moisture | Fiber | Fat | Protein | Carbohydrate | Energy |
Regression | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Linear | 0.001 | 0.000 | 0.716 | 0.774 | 0.999 | 0.000 | 0.000 |
Quadratic | 0.002 | 0.049 | 0.041 | 0.034 | 0.000 | 0.000 | 0.000 |
oat*fababean | 0.079 | 0.915 | 0.742 | 0.332 | 0.938 | 0.015 | 0.000 |
oat*sun flower | 0.046 | 0.915 | 0.725 | 0.001 | 0.009 | 0.023 | 0.000 |
oat*flaxseed | 0.128 | 0.653 | 0.498 | 0.004 | 0.021 | 0.003 | 0.000 |
fababean*sun flower | 0.000 | 0.018 | 0.105 | 0.000 | 0.009 | 0.000 | 0.001 |
fababean*flexseed | 0.008 | 0.054 | 0.552 | 0.000 | 0.003 | 0.657 | 0.000 |
Special Quartic | 0.009 | 0.528 | 0.048 | 0.027 | 0.002 | 0.003 | 0.000 |
oat*fababean*sun flower*flaxseed | 0.009 | 0.528 | 0.048 | 0.027 | 0.002 | 0.003 | 0.000 |
R2 (Adjusted) | 0.96 | 0.93 | 0.91 | 0.98 | 0.98 | 0.85 | 0.85 |
Source | K | Na | Mg | Ca | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|
Regression | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Linear | 0.614 | 0.997 | 0.509 | 0.731 | 0.003 | 0.008 | 0.004 |
Quadratic | 0.000 | 0.009 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 |
oat*fababean | 0.456 | 0.873 | 0.967 | 0.704 | 0.718 | 0.016 | 0.164 |
oat*sun flower | 0.553 | 0.841 | 0.877 | 0.760 | 0.710 | 0.006 | 0.005 |
oat*flaxseed | 0.464 | 0.889 | 0.927 | 0.041 | 0.004 | 0.007 | 0.335 |
fababean*sun flower | 0.005 | 0.006 | 0.004 | 0.001 | 0.021 | 0.007 | 0.041 |
fababean*flaxseed | 0.127 | 0.966 | 0.832 | 0.030 | 0.009 | 0.003 | 0.744 |
Special Quartic | 0.006 | 0.004 | 0.007 | 0.005 | 0.012 | 0.008 | 0.005 |
oat*fababean*sun flower*flaxseed | 0.006 | 0.004 | 0.007 | 0.005 | 0.012 | 0.008 | 0.005 |
R2(Adjusted) | 0.99 | 0.97 | 0.94 | 0.99 | 0.98 | 0.95 | 0.98 |
S.code | Response parameters | Theoretical value | Experimental value |
OR1 Oat = 48 g Faba bean = 39 g Sunflower = 4 g, Flaxseed = 8 g | % Ash | 1.172 | 1.69±0.25 |
% Protein | 24.940 | 22.57±0.39 | |
% Carbohydrates | 59.841 | 60.57±2.3 | |
Energy (kcal/ | 391.206 | 400.67±5.9 | |
Fe (mg/100 g) | 7.809 | 7.52±0.51 | |
Mg (mg/100 g) | 119.202 | 120.22±0.99 | |
Ca (mg/100 g) | 5.996 | 5.26±0.50 | |
K (mg/100 g) | 392.013 | 390.78±3.24 | |
Na (mg/100 g) | 5.779 | 6.13±0.67 | |
Zn (mg/100 g) | 6.328 | 6.02±0.38 | |
Composite desirability: 0.94049 | |||
S.code | Response parameters | Theoretical value | Experimental value |
OR2 oat=47.7803 faba-bean= 39.854 sun flower=7.8501 flex-seed=4.5154 | % Ash | 2.426 | 2.44±0.25 |
% Protein | 23.914 | 23.65±0.29 | |
% Carbohydrates | 65.546 | 67.12±0.69 | |
Energy (kcal/ | 398.206 | 400.67±5.9 | |
Fe (mg/100 g) | 7.909 | 7.52±0.51 | |
Mg (mg/100 g) | 120.202 | 121.22±0.99 | |
Ca (mg/100 g) | 6.596 | 5.26±0.50 | |
K (mg/100 g) | 398.013 | 400.78±3.24 | |
Na (mg/100 g) | 6.779 | 6.13±0.67 | |
Zn (mg/100 g) | 7.328 | 6.72±0.38 | |
Composite desirability: 0.90412 | |||
S.code | Response parameters | Theoretical value | Experimental value |
OR3 Oat= 50 Faba-bean= 30 sun flower= 10 flex-seed= 10 | % Ash | 1.172 | 1.69±0.25 |
% Protein | 24.940 | 22.57±0.39 | |
% Carbohydrates | 59.841 | 60.57±2.3 | |
Energy (kcal/ | 391.206 | 400.67±5.9 | |
Fe (mg/100 g) | 7.925 | 7.88±27 | |
Mg (mg/100 g) | 120.993 | 122±4.25 | |
Ca (mg/100 g) | 7.883 | 8.02±0.63 | |
K (mg/100 g) | 412.200 | 415.21±5.23 | |
Na (mg/100 g) | 6.102 | 6.51±0.38 | |
Cu (mg/100 g) | 1.294 | 1.33±0.45 | |
Composite desirability: 0.93982 |
Aerobic plate count (APC) in CFU/g during 30days of storage | ||||
---|---|---|---|---|
S.code | 0day | 7day | 15day | 30day |
Control | TFTC | 1.45×104 | 6.00×106a | 3.38×108a |
OR1 | TFTC | TFTC | 1.45×105b | 2.26×105c |
OR2 | TFTC | TFTC | 4.95×103d | 1.43×106b |
OR3 | TFTC | TFTC | 5.95×104c | 1.32×105c |
Total fungus count (TFC) in cfu/g during 30 days of storage | ||||
---|---|---|---|---|
S.code | 0day | 7day | 15day | 30day |
Control | TFTC | 3.1×106 | 2.2×107a | 2.85×108a |
OR1 | TFTC | TFTC | 2.85×103b | 2.52×105c |
OR2 | TFTC | TFTC | 3.40×102c | 8.40×105c |
OR3 | TFTC | TFTC | 1.55×103b | 6.55×106b |
S. code | Color | Flavor | Taste | Texture | Overall-acceptability |
---|---|---|---|---|---|
Control | 5.31±0.7c | 5.44±0.51b | 4.94±0.93c | 5.69±0.7c | 5.34±0.38b |
OR1 | 6.3±0.6a | 6.4±0.85a | 6.19±0.75a | 6.37±0.5a | 6.2±0.44a |
OR2 | 5.9±0.82b | 5.78±0.6b | 5.69±0.7b | 6.12±0.72a | 5.87±0.39b |
OR3 | 6.12±0.72a | 6.1±0.62a | 6.3±0.6a | 6.06±0.68b | 6.14±0.3a |
Abbreviation | Full Term |
ANOVA | Analysis of Variance |
ANFs | Anti-nutritional Factors |
AOAC | Association of Official Analytical Chemists |
APC | Aerobic Plate Count |
AAS | Atomic Absorption Spectrophotometer |
APC | Aerobic Plate Count |
BPW | Buffered Peptone Water |
CFU/g | Colony-Forming Units per Gram |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
IC₅₀ | Inhibitory Concentration Required to Reduce 50% of Radicals |
ICMSF | International Commission on Microbiological Specifications for Foods |
G6PD | Glucose-6-Phosphate Dehydrogenase |
LDL | Low-Density Lipoprotein |
LaCl₃ | Lanthanum Chloride |
Mg | Magnesium |
PDA | Potato Dextrose Agar |
PHLS | Public Health Laboratory Services |
RPM | Revolutions Per Minute |
TPC | Total Phenolic Content |
TFC | Total Flavonoid Content |
WHO | World Health Organization |
RTE | Ready-to-Eat (Foods) |
GAC | Gallic Acid Content |
que | Quercetin Equivalent |
CHO | Carbohydrates |
R1-R17, OR1-OR3 | Snack Bar Formulations (Coded Samples) |
[1] | Ayogu, R. N. B., Afam-Anene, O. C., & Udenta, E. A. (2018). Evaluation of nutrient composition, functional, and sensory properties of complementary food formulated from sorghum, bambara nut, and orange-fleshed sweet potato. Current Research in Nutrition and Food Science Journal, 6(2), 361-372. |
[2] | Pathare, P. B. (2010). Development of a cereal bar using local ingredients. Asian Journal of Food and Agro-Industry, 3(3), 302-310. |
[3] | Tekalegn, Y., Abera, A., & Baraki, N. (2021). Prevalence of undernutrition and associated factors among school-age children in Ethiopia. BMC Nutrition, 7, 1-9. |
[4] | Webster, F. H., & Wood, P. J. (2011). Oats: Chemistry and Technology (2nd ed.). American Association of Cereal Chemists. |
[5] | Taneyo Saa, D. L. (2014). Oats as functional food: Nutritional and health benefits. African Journal of Food Science and Technology, 5(4), 81-88. |
[6] | Ali, M., Maalouf, F., Ahmed, S., & Abang, M. M. (2014). Faba bean breeding and production technologies. ICARDA Manual, 15, 1-22. |
[7] | Rochfort, S., & Panozzo, J. (2007). Phytochemicals for health, the role of pulses. Journal of Agricultural and Food Chemistry, 55(20), 7981-7994. |
[8] | De Leonardis, A., Macciola, V., & De Felice, M. (2003). Effects of different roasting conditions on the oxidative stability of sunflower seed oil. European Journal of Lipid Science and Technology, 105(3-4), 152-158. |
[9] | Eyres, L. (2015). The role of herbal extracts in food preservation. Food New Zealand, 15(5), 29-32. |
[10] | Jethwani, P., Mehta, R., & Kumari, A. (2020). Rosemary extract as a natural antioxidant in food preservation. Journal of Pharmacognosy and Phytochemistry, 9(3), 1876-1880. |
[11] | Nath, A., Dutta, D., & Kumar, P. (2015). Jaggery: A traditional Indian sweetener. Indian Journal of Traditional Knowledge, 14(3), 532-537. |
[12] | Sun-Waterhouse, D. (2010). The development of functional foods incorporating ingredients sourced from by-products of fruit industry. Food Research International, 44(5), 1217-1226. |
[13] | Soni, A., & Saxena, D. C. (2018). Nutritional and sensory evaluation of developed multigrain bars. International Journal of Food and Nutritional Sciences, 7(2), 25-30. |
[14] | Malik, S., Bhat, M., & Kumar, P. (2019). Nutritional composition of cereals and cereal products. International Journal of Agriculture Sciences, 11(8), 8456-8459. |
[15] | Gill, R., & Singh, J. (2020). Nutritional quality and consumer acceptability of developed cereal bar. Journal of Pharmacognosy and Phytochemistry, 9(2), 952-956. |
[16] | Omran, A. A. (2018). Development of cereal bar using selected cereals and pulses. Journal of Food Processing & Technology, 9(6), 1-5. |
[17] | Margier, M., Leroux, C., Durand, E., Prost, M., Demonty, I., & George, S. (2018). Nutritional composition of legumes: Application to health benefits and understanding metabolism. Journal of Functional Foods, 45, 155-164. |
[18] | Andrejaš, L., Adžamić, M., & Vukušić, J. (2020). Consumer behavior and snack food consumption trends. Croatian Journal of Food Science and Technology, 12(1), 23-30. |
[19] | Sobana, A. (2017). Sports nutrition and energy bar formulation. International Journal of Engineering Research and Applications, 7(8), 1-4. |
[20] | Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118-129. |
[21] | Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional foods and nondairy probiotic food development: Trends, concepts, and products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292-302. |
[22] | Bhakha, R., Sharma, S., & Singh, D. (2019). Nutritional evaluation and acceptability of value-added bars developed using cereals, pulses, and dried fruits. International Journal of Chemical Studies, 7(2), 1076-1080. |
[23] | Mohd Aiman, Y. A., Muhammad, F. A., Wan Abdul Manan, W. M., & Nurul Izzah, A. H. (2016). Nutritional composition and consumer acceptability of cereal snack bars enriched with soy protein isolate and date paste. Malaysian Journal of Nutrition, 22(1), 27-34. |
[24] | Devi, N., Sarma, D., & Deka, S. C. (2016). Antinutritional factors and bioactive compounds in some indigenous rice varieties of Assam. International Journal of Current Microbiology and Applied Sciences, 5(5), 647-653. |
[25] | Ranjana, K., Chauhan, B. M., & Saxena, D. C. (2013). Nutritional and anti-nutritional characteristics of faba bean (Vicia faba L.). Journal of Food Science and Technology, 50(1), 44-50. |
[26] | Rahate, K. A., Madhumita, M., & Kaur, C. (2020). Effects of processing on reduction of anti-nutritional factors in faba bean (Vicia faba L.). Legume Science, 2(4), e42. |
[27] | Saini, R. K., Nile, S. H., & Keum, Y. S. (2020). Health benefits and functional properties of rosemary (Rosmarinus officinalis) as a food ingredient. Journal of Food Science, 85(8), 2679-2687. |
[28] | David, P. M., John, A. A., & Williams, O. T. (2015). Standard methods for the determination of mineral elements in food using atomic absorption spectrophotometry. Journal of Food Composition and Analysis, 38, 30-38. |
[29] | AOAC. (2000). Official Methods of Analysis (17th ed.). Association of Official Analytical Chemists, Gaithersburg, MD, USA. |
[30] | Ramírez, J. A., García, M. C., & Fernández, A. (2018). Evaluation of the Kjeldahl method for nitrogen determination in food samples: Optimization and quality control. Journal of Food Chemistry, 255, 354-360. |
[31] | Momanyi, M. K., Omwamba, M. N., & Mbugua, S. K. (2020). Determination of crude fiber content in food samples using standard gravimetric procedures. International Journal of Food Science and Nutrition, 5(3), 45-51. |
[32] | Desalegn, A., Abera, S., & Tadesse, A. (2015). Determination of crude fat content in food samples using solvent extraction method. International Journal of Food Science and Nutrition Engineering, 5(2), 55-60. |
[33] | AOAC. (1999). Official Methods of Analysis (16th ed.). Association of Official Analytical Chemists, Washington, DC, USA. |
[34] | Abbas, S., & Shah, S. H. (2007). Application of lanthanum chloride to minimize interference in atomic absorption spectroscopic determination of mineral elements in food samples. Journal of Analytical Chemistry, 62(3), 248-252. |
[35] | Kasozi, K. I., Namubiru, S., Kamugisha, R., & Matovu, E. (2018). Evaluation of heavy metal content and mineral composition of selected herbal plants used in traditional medicine in Uganda. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID 7369574. |
[36] | Abelti, A. L. (2017). Determination of essential and toxic metals in selected cereal grains marketed in Addis Ababa, Ethiopia (Master’s thesis). Addis Ababa University, Addis Ababa, Ethiopia. |
[37] | Sarwar, A., Wahid, F., Imran, M., & Mehmood, T. (2020). Evaluation of antioxidant activity of plant extracts using DPPH free radical scavenging assay. Journal of Medicinal Plants Studies, 8(2), 50-55. |
[38] | Demissie, T., Tadesse, A., & Fekadu, H. (2018). Isolation and identification of fungal contaminants from food samples and antimicrobial susceptibility testing. International Journal of Microbiology Research, 10(1), 22-28. |
[39] | Peltier, D. M., Smith, J. K., & Johnson, R. L. (2015). Statistical methods for food science: Application of ANOVA and experimental design. Journal of Food Science and Technology, 50(3), 450-460. |
[40] | Ho, J. C., Lee, S. H., & Kim, M. Y. (2022). The importance of macro- and micronutrients in human health: A comprehensive review. Nutrients, 14(4), 789. |
[41] | Istrati, D., Popescu, D., & Stanciu, G. (2019). Role of essential minerals in human nutrition and health. Journal of Nutritional Biochemistry, 65, 1-12. |
[42] | Munir, S., Ahmed, I., & Khan, M. A. (2018). Nutritional and mineral composition of date-based snack bars: Implications for functional food development. Journal of Food Science and Technology, 55(6), 2300-2308. |
[43] | Syam, S., Kumar, P., & Rao, V. (2016). Micronutrient deficiencies and their health impacts: A review. Journal of Nutrition and Health, 7(4), 234-242. |
[44] | Silva, M. A., Santos, J. D., & Almeida, R. F. (2016). Nutritional characterization of jerivá flour-supplemented snack bars. Food Chemistry, 212, 529-535. |
[45] | Ofori, J., Agyekum, A., & Mensah, J. (2016). Assessment of iron levels in commonly consumed foods and their compliance with WHO guidelines. Food Safety Journal, 10(2), 78-85. |
[46] | World Health Organization (WHO). (1982). Trace elements in human nutrition and health (Technical Report Series No. 670). Geneva: WHO. |
[47] | Skowyra, M., Różańska, M., & Chojnacka, K. (2014). Polyphenols content and antioxidant activity of rosemary (Rosmarinus officinalis L.) extracts. Journal of Food Science and Technology, 51(12), 3703-3711. |
[48] | Tavassoli, A., & Djomeh, Z. E. (2011). Total phenols, flavonoids, and antioxidant activity of different rosemary extracts. Journal of Medicinal Plants Research, 5(3), 66-71. |
[49] | Nguyen, V. T., Nguyen, D. H., & Tran, Q. T. (2020). Evaluation of antioxidant activity of plant extracts using DPPH assay: A comparative study. Journal of Applied Pharmaceutical Science, 10(6), 45-51. |
[50] | Sarifudin, A., Nugraha, R., & Ramadhan, R. (2020). Application of mixture regression models for the optimization of food formulations: A full quartic polynomial approach. International Journal of Food Science and Nutrition, 5(2), 34-42. |
[51] | Montgomery, D. C. (2013). Design and Analysis of Experiments (8th ed.). John Wiley & Sons. |
[52] | Akinmoladun, O. F., Akinmoladun, F. O., & Olajide, O. T. (2020). Microbial quality and shelf-life stability of cereal-based snack bars. Journal of Food Science and Technology, 57(5), 1791-1799. |
[53] | Public Health Laboratory Services. (1998). Guidelines for the microbiological quality of ready-to-eat foods. PHLS Microbiology Digest, 15(1), 1-5. |
[54] | International Commission on Microbiological Specifications for Foods (ICMSF). (1998). Microorganisms in foods 6: Microbial ecology of food commodities. |
APA Style
Argessa, G. D. (2025). Development and Nutritional Optimization of a Healthy Snack Bar for Children Using Locally Available Ingredients. Science Frontiers, 6(3), 34-56. https://doi.org/10.11648/j.sf.20250603.11
ACS Style
Argessa, G. D. Development and Nutritional Optimization of a Healthy Snack Bar for Children Using Locally Available Ingredients. Sci. Front. 2025, 6(3), 34-56. doi: 10.11648/j.sf.20250603.11
@article{10.11648/j.sf.20250603.11, author = {Gemechu Duguma Argessa}, title = {Development and Nutritional Optimization of a Healthy Snack Bar for Children Using Locally Available Ingredients }, journal = {Science Frontiers}, volume = {6}, number = {3}, pages = {34-56}, doi = {10.11648/j.sf.20250603.11}, url = {https://doi.org/10.11648/j.sf.20250603.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sf.20250603.11}, abstract = {The rising global demand for healthy, convenient, and ready-to-eat foods has increased the popularity of snack bars, valued for their energy density and portability. This study aimed to develop nutritious snack bars for children using locally available ingredients: oats, faba beans, sunflower seeds, and flax seeds. A mixture design supported by Minitab v.18 generated 17 formulations with varying ingredient ratios. Rosemary leaf extract was added to enhance antioxidant properties, and jaggery was used as a natural sweetener. Proximate analysis showed moisture content of 6-8%, ash 1.12-2.57%, fiber 2-3.5%, fat 5-7%, protein 20-24%, and carbohydrates 58-62%, yielding an energy value of 393-400 Kcal/100g. Mineral content included sodium (5-7 mg), potassium (364-440 mg), calcium (4-8 mg), and magnesium (118-121 mg), with micro-minerals copper (0.4-1.67 mg), iron (6-9.25 mg), and zinc (4-7.5 mg) per 100g. The optimal formulation, with a composite desirability of 0.940494, comprised 48.18g oats, 39.80g faba beans, 4g sunflower seeds, and 8.01g flax seeds. Sensory evaluation confirmed its high acceptability, and microbial analysis verified product safety for up to 30 days of storage.}, year = {2025} }
TY - JOUR T1 - Development and Nutritional Optimization of a Healthy Snack Bar for Children Using Locally Available Ingredients AU - Gemechu Duguma Argessa Y1 - 2025/07/31 PY - 2025 N1 - https://doi.org/10.11648/j.sf.20250603.11 DO - 10.11648/j.sf.20250603.11 T2 - Science Frontiers JF - Science Frontiers JO - Science Frontiers SP - 34 EP - 56 PB - Science Publishing Group SN - 2994-7030 UR - https://doi.org/10.11648/j.sf.20250603.11 AB - The rising global demand for healthy, convenient, and ready-to-eat foods has increased the popularity of snack bars, valued for their energy density and portability. This study aimed to develop nutritious snack bars for children using locally available ingredients: oats, faba beans, sunflower seeds, and flax seeds. A mixture design supported by Minitab v.18 generated 17 formulations with varying ingredient ratios. Rosemary leaf extract was added to enhance antioxidant properties, and jaggery was used as a natural sweetener. Proximate analysis showed moisture content of 6-8%, ash 1.12-2.57%, fiber 2-3.5%, fat 5-7%, protein 20-24%, and carbohydrates 58-62%, yielding an energy value of 393-400 Kcal/100g. Mineral content included sodium (5-7 mg), potassium (364-440 mg), calcium (4-8 mg), and magnesium (118-121 mg), with micro-minerals copper (0.4-1.67 mg), iron (6-9.25 mg), and zinc (4-7.5 mg) per 100g. The optimal formulation, with a composite desirability of 0.940494, comprised 48.18g oats, 39.80g faba beans, 4g sunflower seeds, and 8.01g flax seeds. Sensory evaluation confirmed its high acceptability, and microbial analysis verified product safety for up to 30 days of storage. VL - 6 IS - 3 ER -